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ABSTRACT

This study evaluates several methods that enhance the spatial resolution of multispectral
images using a finer resolution panchromatic image. The resultant hybrid, high resolution,
multispectral data set has increased visible interpretation and improved classification
accuracy, while preserving the radiometry of the original multispectral images. These
methods can therefore be applied to create simulated high resolution multispectral data, as
well as to enhance image analysis. - oy
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1.0 INTRODUCTION

Spatial resolution is an important parameter in image interpretation. However, to
capture multispectral images or images within a narrower spectral bandpass, spatial
resolution is often diminished. In general, if a sensing system has fine spectral

discrimination, then it is physically difficult to also have fine spatial resolution.

The emphasis of this study is to enhance the spatial resolution of multispectral
images using data from another sensor. In particular, this study evaluates several
techniques to merge the medium resolution Thematic Mapper (TM) multispectral images
with a high resolution panchromatic image captured from the SPOT satellite. The
performance of each merging technique is measured by classification accuracy on the
hybrid images, as well as on how well the hybrid images maintain the radiometric and

spectral information of the TM data.

The results of this study show that these merging techniques can produce high
resolution multispectral images for enhanced image analysis. Not only is visible
interpretation clearly improved, but classification accuracy is also increased. In addition,

the resultant hybrid images adequately maintain the TM radiometry.

For the remainder of this introductory chapter, section 1.1 discusses some concepts
on resolution in the remote sensing arena. It covers the effects that different types of
resolution have on classification accuracy, as well as the design trade-offs between these
types of resolution. Section 1.2 looks at previous work done on merging remotely sensed

data.




1.1 Spatial, Spectral, and Radiometric Resolution

In general terms, resolution can be thought of as the ability of a sy.stem to distinguish
fine detail. Most often, we think of resolution in terms of "spatial resolution”, or how
well we can resolve the spatial detail in an image. As such, there are many ways to
measure or quantify the spatial resolution of an imaging system (i.e. by the modulation
transfer function, ground resolvable distance, etc).

For simplicity, the ground instantaneous field-of-view (GIFOV) is used in this
study. The GIFOV is the projection of the limiting detector aperture onto the ground. Itis
similar to the ground sample distance and has units of length. Thus the smaller the
GIFOV, the smaller the sampling distance on the ground, and the finer the spatial

resolution of the system.

However, in the field of remote sensing, and especially with multispectral data,

there are other forms of resolution that are equally as important.

"Radiometric resolution" is determined by the number of effective grey levels that
are available to the system to represent the scene brightness. For example, an 8-bit system
would be able to record an image in 256 levels of brightness. Its radiometric resolution

would be finer and more precise than a 6-bit system which can only work with 64 levels.

"Spectral resolution" can be thought of as the width of the bandpass over which
radiance is measured. The more narrow this wavelength interval, the finer the spectral
resolution. Intuitively, the finer your spectral resolution, the more spectral bands we could

obtain over a given spectral range. The more spectral bands available for analysis, the




more spectral information will be available.

1.1.1  Resolution and Classification Accuracy

The effect of these three types of resolution on classifying images has been studied,
particularly since the introduction of the Thematic Mapper.

The Thematic Mapper (TM) was launched aboard Landsat-4 on July 16, 1982, In
comparison with the older Multispectral Scanners (MSS), TM provided finer spatial
resolution, narrower and more optimally placed spectral bands, and finer radiometric

precision. A comparison chart is shown below.

Table 1-1
A Comparison of Multispectral Scanners (MSS) and Thematic Mapper (TM)
MSS ™
GIFOV 30 (bands1-5,7)

(m) 80 120 (band 6)
05.06 0.45-0.52
Spectral 06-0.7 0069

Bandpass 5. 0.
P 07-08 0.76 - 0.90
(micron) 08-11 155-1.75

10.40 - 12.50
2.08-235
Quantization 64 256
Levels (6 bits) (8 bits)

With these improvements in resolution, numerous studies were conducted to




determine their effect on classification accuracy. Even before the TM was launched,
Sadowski et al [77] used simulated data to find that classification accuracy would be
significantly enhanced with the additional TM spectral bands and the increased number of
quantization levels. However, they also discovered that classification accuracy actually
decreased as spatial resolution became finer. These results were corroborated by
Morgenstern et al [77], Latty and Hoffer [81], Markham and Townshend [81], and
Williams et al [84].

The reason behind the apparent lack of effect that finer spatial resolution has on
classification is because of two offsetting effects. Improving spatial resolution will sharpen
boundaries and reduce the amount of mixed pixels in an image. This reduction in mixed
pixels contributes to an increase in classification accuracy. However, improving spatial
resolution also increases the within-class spectral variance causing a decrease in
classification accuracy [Landgrebe 77, and Irons et al 85]. Thus depending on the input
image, increasing spatial resolution may or may not aid in computer classification -- even
though the advantages of increased spatial resolution appear obvious when conducting
manual photointerpretation.

Many of these studies concluded that the commonly-used per-pixel Gaussian
maximum likelihood (GML) classifier did not effectively use the additional information that
increased spatial resolution provides. However, in these cases, only spectral bands were
used as input to the GML classifier.

To better use this information in high spatial resolution images, current classifiers
have been following either of two paths, one using the textural features found in the image
and the other using context to support classification. For two of the more well-known
papers on using texture and context for classification, refer to Haralick [79] and Gurney

and Townshend [81] respectively.




Using these types of classifiers which apply spatial information, classification
accuracies have increased with more spatial detail [Di Zenzo et al 87, Hjort and Mohn 84,
Warnick et al 89]. Rosenblum [90] found that the optimal set of input features for

classification of high resolution air photos contain both spectral and textural information.

Generally, if a classifier can effectively use all spatial, spectral, and radiometric
information, classification accuracies can be improved with finer spatial, spectral, and

radiometric resolution.

1.1.2 Resolution Trade-offs

Unfortunately, as in many relationships, there are trade-offs between the different types
of resolution. For example, if we wished to have a system with fine spatial resolution, it
would be very difficult for this system to additionally have fine spectral resolution. To
improve the spatial resolution of our scanning system, we would require a smaller GIFOV.
A smaller GIFOV means the energy reaching the sensor has originated from a smaller
ground area -- and if other parameters remain constant -- this means less energy reaching
the sensor. Lower levels of energy means a lower signal level available to the sensor,
resulting in a lower signal-to-noise ratio (SNR). To produce useful output, the sensor
must be at or above a threshold SNR to distinguish a signal from the noise. To compensate
this lower SNR due to a smaller GIFOV we could broaden the spectral bandpass to allow
more energy through -- i.e., spectral resolution is sacrificed to compensate for the gain in
spatial resolution.

Conversely, if we wished our data to be captured within a narrower spectral band,
again less energy would be incident on the detector. Increasing the GIFOV (losing spatial

resolution) would increase the number of incident photons on the detector so that an
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acceptable SNR is maintained.

Another trade-off mentioned by Green [88] is a simple data handling problem.

Suppose we had 8 Mbits of digital storage. We could approximately store either a:

1000 x 1000 pixel image, 8 bits/pixel, 1 spectral band;
or

380 x 380 pixel images, 8 bits/pixel, 7 spectral bands;
or

1000 x 1000 pixel images, 4 bits/pixel, 2 spectral bands.

The first system provides high spatial resolution but limited spectral information. The
second example provides a significant amount of spectral data, but at a low spatial
resolution. The third system provides some spectral resolution at high spatial resolution,
but at much lower radiometric precision than the first two systems. Other similar data
handling constraints that could drive information trade-offs are limitations in transmission
and acquisition time.

All these system trade-offs are dependent on the current state of technology. With
time and technological advances, information trade-offs will become less severe. But given
existing data and existing remote sensing systems, we can overcome these current trade-
offs by combining data from two complementary systems. The resultant hybrid data set

would contain the "best" characteristics of the individual systems.




1.2  Historical Overview on Merging Images

To improve the relatively coarse spatial resolution of multispectral images, the idea
of merging data from different sensors has been attempted. Early studies reported
successful merging with the Landsat MSS images (80 m GIFOV). Radar images from
airborne systems and the Shuttle Imaging Radar (SIR-A) have been merged with MSS
images to enhance geological interpretation [Daily 79; Chavez 83]. Lauer and Todd [81]
combined MSS and RBV images to obtain a hybrid product, while Schowengerdt [82]
merged MSS with the Heat Capacity Mapping Mission (HCCM) data.

With the introduction of the TM and SPOT sensor systems which have finer spatial
and spectral resolutions, further studies on merging were reported. All of these merging
techniques, as well as those done with.MSS images, could basically be classified into 3

categories.
1.2.1 Merging for Display

Price [87] coined the first category of merging techniques as the "ad hoc”
approaches. Since the primary concern of these methods was to optimize image display,
some unusual operations were done on the data. However, the resultant hybrid images
appeared to have increased spatial resolution. Welsh et al [87] summarized these ad hoc

methods into two equations:

M = a x (M; x P} + b, (1-1)
or

M =a » (oM ® wP) + b, (1-2)




where:
M;'" = thedigital count (DC) for a pixel in the i-th band of the merged image;
M; = DC for the corresponding pixel in the i-th multispectral image;
P = DC for the corresponding panchromatic reference image pixel;
W], Wy = weighting factors;
ay, by = scaling factors to optimize the dynamic range; and

@® = operator which could be addition, subtraction, multiplication, ratio. etc.

Using these methods and simulated SPOT data, Cliche [85] integrated the
panchromatic channel into the multispectral channels to significantly improve visible
interpretation. Chavez [84] added edge enhanced (simulated) SPOT data to TM images.
Chavez [86] also merged TM data with a digitized panchromatic photograph. Hashim [88]
simply “overiaid" registered TM and MSS images to obtain a hybrid product.

Currently, many Geographical Information Systems (GIS) which contain layers of
information in their database, implement some sort of data combination for display to the
user [Welsh 85; Walsh et al 87]. Since a high priority of a GIS is to optimize image
display, "ad hoc" approaches to merging are frequently used. One of the more simpler
methods for an enhanced RGB display is to place the high resolution panchromatic image
into the green channel, and two low resolution multispectral bands into the red and blue
channels. Since the green channel contributes the most to the intensity component, the

overall display looks sharper.




1.2.2 Merging by separate manipulation of spatial information

A multispectral image can be thought of as having a spectral component and a spatial
component. The second type of merging algorithm first tries to separate these components,
then manipulates the spatial component to obtain spatially enhanced images without
touching the spectral information.

One way to separate spatial/spectral information is by looking at the spatial
frequencies of the image. An image, according to Schowengerdt, can also be considered to
be the sum of a low spatial frequency component and a high spatial frequency component

[Schowengerdt 80].

image = lowpass (image ) + highpass ( image ) (1-3)

The primary assumption in this technique is that the spectral information is contained
in the lowpass component and that the spatial information is in the highpass component. If
the edges, or the high spatial frequencies of the images to be merged are correlated, then the
highpass component of the finer spatial resolution image could be substituted for the
highpass component of the lower spatial resolution image. Assuming that the majority of
the spectral information is contained in the low frequency component, then the resultant
hybrid image would maintain its spectral content while gaining improved spatial resolution.

Schowengerdt used this technique to reconstruct compressed MSS images by
extrapolating the edge information from the high resolution bands to the low resolution
(compressed) bands. Tom et al [85] used a variation of this technique to sharpen TM band

6 (120 m GIFOV) by using the TM bands that have a 30 m GIFOV.




Another way to separate spatial and spectral information is based on the intensity-
hue-saturation (IHS) color transformation [Hayden et al 82]. The IHS transformation
allows spatial information, contained in the intensity component, to be treated separately
from the spectral information which is embedded in the hue and saturation components.
The user can then manipulate the spatial information via the intensity component while
maintaining overall color balance of the original scene.

With the THS method, three carefully selected multispectral bands are transformed
into the THS domain. The digital counts (DC) of the intensity component can then be
modified using the high resolution (panchromatic) reference image DCs. The modified data
is then transformed back into the red-green-blue (RGB) color domain and displayed.

Using IHS methods, Carper et al [87] and Welsh and Ehlers [87] obtained visually
superior results than those obtained using Cliche's (ad hoc) methods. Carz has to be taken
though, to ensure that the high spatial resolution reference image is highly correlated to the
other input images. Having high correlation between two images means that the linear

relationship between the images is very strong.

1.2.3  Merging and Maintaining Radiometry

All of these methods up to now produced visually enhanced images. Spatial
resolution appeared to take on the reference (panchromatic) image resolution while retaining
most of the spectral information. However, in all cases, the specific radiometric values of
the multispectral images were lost. The third type of merging algorithm is similar to the ad
hoc approach, but is more statistically-based anc attempts to maintain radiometric integrity.

One method suggested by Pradines [86] to keep radiometric quality of the

multispectral images is illustrated on the next page:
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P1 P2 XP1 XP2

P3 P4 XP3 | xp4

P()
Pl +P2+P3+P4

where XP(J) = X x ,J = 1.4

Figure 1-1. Pradine's Merging Method

3y using this method, the aggregate of the four hybrid pixels will return the
radivimetry of the original multispectral image. However, the high spatial resolution image
(panchromatic channel) must be correlated with the individual multispectral images. For
those bands not correlated with the reference image, this merging algorithm cannot be used.
Two other merging techniques which try to maintain the radiometry of the
multispectral images are the Price [87] and the DIRS methods [Warnick 89]. These

methods are described in more detail in the following section.
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2.0 MERGING METHODS AND MODIFICATIONS

This study evaluates the third type of merging techniques -- those techniques which
attempt to preserve the integrity of the multispectral data. The two primary techniques
under test are the DIRS and the Price methods. In addition, several modifications and
enhancements have been incorporated to address some of the known short-comings of

these techniques. These modified versions are also included for comparison.

2.1 The DIRS Method

The Digital Imaging and Remote Sensing Laboratory (DIRS) conducted a proof-of-
concept study on merging multi-date-milti-sensor-multi-resolution images for enhanced
image analysis [Warnick, et al, 1989]. Specifically they merged a high resolution
panchromatic image (SPOT-1 panchromatic chunnel, 10m GIFOV) with medium resolution
multispectral images (Landsat-5, TM bands 1-5, 7, 30m GIFOV).

The DIRS method can be summarized in the following steps:

(1) The SPOT image is geometrically registered to the TM images.

(2) A medium resolution panchromatic image is created from a weighted
average of TM bands 1 through 4. This synthetic image approximates the same spectral
characteristics as the high resolution SPOT panchromatic channel.

(3) The histogram of the SPOT panchromatic image is then linearly
adjusted to the histogram of the synthetic TM panchromatic image. This transformation
will, to the first order, account for the differing atmospheric and sensor effects between the

SPOT and the Landsat TM images.




(4) The images are then merged to create a high resolution, multiband

hybrid image. The merging algorithm is:

DCrm(1) ) 2-1)

DChybrid Multiband(l) = DCspoT Pan '(DCS T™M P
yn an

where:
DCHybri d Multibang (1) 18 the digital count of the i-th band in the hybrid
multiband image;
DCqpar pay 1 the digital count in the adjusted panchromatic SPOT image;
DCp,4(1) is the DC in the i-th band of the original multispectral image; and

DCS>Tl T™ pan 1S the digital count in the synthetic TM panchromatic image.

The DIRS method is applied on a pixel-by-pixel basis, and therefore each of the

above terms also has a pixel location. These locations are left off for easier reading.

2.1.1  Results Using the DIRS Merging Method
In addition to the visible improvement of the images, the overall classification
accuracy was approximately 10 percentage points higher for the hybrid data set than for the

original TM images.

2.1.2 Concerns on the DIRS Merging Method
Because the DIRS method was developed only as a proof-of- concept study, the

authors identified several areas for further study.

(1) Concemns on creating the synthetic TM panchromatic image:
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The synthetic, medium resolution panchromatic image was produced as a weighted
average of TM bands | through 4. The weighting factor for each band is determined by
finding the common area of the TM spectral response curve and the SPOT panchromatic
spectral response curve. The common area under the two curves is then divided by the
total area under the TM curve considered. The resultant quotient is the weighting factor for
that TM band. By using integration to determine areas, the weighting factor can be

represented as:

f min (TMRSR, i(A), SPOTgrsr(M))d(})

wi = (2-2)

I TMRsg, i(A) dA

where:
i refers to the TM band number, i=1..4;
w.' is the weighting factor for the i-th band;
TMRSR‘ i(7») is the relative spectral response curve of the i-th band of the TM
scene; and

SPOTyqg(A) is the relative spectral response curve of the SPOT panchromatic

channel.

Once the weighting factors are determined for the 4 TM bands, the factors are

normalized as:
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w; = Wi' (2'3)

4
D wi
=1

i

The synthetic TM panchromatic image can now be created as:

4
TMsynpm = 9, Wi X TM; (2-4)

i=1

However, it was found that the synthetic TM panchromatic image was not sensitive
in the 700 to 750 nm range, while the SPOT panchromatic sensor is still relatively
responsive. Since the reflectivity of vegetation is active in this region, the SPOT
panchromatic image responds to this vegetation reflectance information while the synthetic
TM panchromatic did not.

To correct this discrepancy, the spectral response curve for TM band 4 was "shifted”
from a bandpass of (760, 900) nm down to (710, 850) nm. This shift increased the
weighting factor for TM band 4, thereby increasing the responsivity in this region and
providing a "truer” approximation of the SPOT panchromatic image. However, the authors
suggested that another method of producing a synthetic TM panchromatic image should be

explored.

(2) Concerns on the weak correlation between the SPOT panchromatic channel and TM
bands 4, 5, and 7:
The merging algorithm used in the DIRS method as previously shown in equation

2-1)is:

15




DCrm(i) )

DCHybrid Multiband(i)) = DCspoT Pan .(DCS —_—
yn an

where i represents the TM bands 1 through 5 and 7. The concern is when the images for
TM bands 4, 5, and 7 are merged with the SPOT panchromatic image. These bands are
only weakly correlated with the SPOT panchromatic channel and should probably be

merged in a different fashion.

(3) Concemns on Radiometry:

The high resolution, multiband hybrid images can be thought of as TM multiband
images that have been spatially enhanced. The enhancement is the result of the integration
of the SPOT panchromatic image, but the resultant mean radiances should still be the same
as the original TM data. As illustrated below, the original TM images have one pixel to
describe a 30m by 30m area, while the hybrid image has 9 pixels to describe the same area.
For consistent nomenclature, the 30m by 30m area will be referred to as a "superpixel™

and a 10m by 10m pixel as a "subpixel”.

1 2 3
30m 4 5 6
10m
7 8 9
TM pixel Nine high resolution
"superpixel” "subpixels"
(a) (b)

Figure 2-1 Superpixel and subpixels
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Assuming linear modeling, the following condition must hold to maintain radiometric

integrity.

DCmm =

O

9
Z DChiybrid(j) (2-5)
i=1

However, no such check was made or enforced in the DIRS method.
2.2 General Modifications to the DIRS Method

This section describes three general modifications to the DIRS method which address
some of the concerns raised in the previous section. These modifications are grouped
together because they do not alter the merging algorithm. Instead, they affect either the

input images to the merging algorithm, or the hybrid output images.
2.2.1 Creating a TM panchromatic image

In the DIRS study, the weighting factors for each TM band were obtained by
computing the overlapping areas of the SPOT panchromatic and the TM bands spectral
response curves. However, the synthetic TM panchromatic image had a lack of sensitivity
in the 700-750 nm region. Consequently the TM band 4 spectral response curve was
"shifted" to provide a stronger weighting factor and more responsivity in that bandpass.

Another method to obtain the weighting factors has been used by Suits [Suits et al

88] to substitute signals from one sensor for the signals of another. By slightly modifying
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Suit's approach, new TM weighting factors were computed using a multivariate regression

on estimated sensor signals.

Estimating Sensor Signals

Given the reflectance spectrum of a target, some atmospheric parameters, and an
atmospheric model (such as LOWTRAN) we can estimate the radiance that reaches the
sensor in a bandpass of interest. This radiance parameter is designated L, , and is a
function of wavelength, A. With Ly we can cascade the sensor's spectral response
function, B(A), to get the effective radiance seen by the sensor. This effective radiance, L

is computed as:

f L, - BA) dA

f B(X) dx
0

The output signal (in DCs) can now be estimated using L and the known gain and

offset of each sensor.

ﬁai = Lsi- gffseti 2-7)
gam;
where: DC; = estimated DC of TM band i ;
L., = effective radiance seen by the i-th band; and
gain;, offset, = the gain and offset of the i-th band.
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These simulated signals are then regressed to determine the weighting factors. This

regression can be represented as:

IS\CSPOT-I DCrmi1  DCrmaz-1 IS\CTMa-l BETM4-1 |
DCspor-2 DCrmi2 DCrmz2 DCrmsz DCrmaz | [@1 2
ISE3SPOT-3 = | DCrmia IS\CTM2~3 ISETM?H IS\CTM4-3 gi *|Es (2-8)
. . . s E'n
L ISESPOT-n J L DCrM1-n ISETMZ-n 15ETm-n IS\CTM4~n J
where: DC  is the estimated signal of the subscripted sensor;
®_,m= 1.4 isthe weighting factors for TM1, TM2, TM3. and TM4

respectively;
n 1s ihe number of samples in the regression; and

€ is the error vector which is minimized when solving for w.

To compute the simulated signals from TMI1, TM2, TM3, TM4 and SPOT,
LOWTRAN 7 (an atmospheric propagation model) was modified. The first modification to
LOWTRAN 7 was to allow the program to access a target reflectance spectrum.
LOWTRAN 7 in its original form uses only one reflectance value (called the surface albedo
or 'SALB’) for all wavelengths. This limitation implies that all target reflectance spectra are
uniform and flat. The modified version now allows LOWTRAN 7 to access a file
containing reflectance information. A reflectance value is then accessed (or computed via
interpolation) for each wavelength run by LOWTRAN.

The second modification was available from previous work by Carl Salvaggio. His
modification integrated the sensor's spectral response curves with the radiance values

computed by LOWTRAN 7. The output signal (in DC) was then computed following
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equation (2-7).

Having modified LOWTRAN 7 to produce simulated sensor DCs, 25 target
reflectance spectra were chosen. These 25 targets were comprised of 5 major classes --
urban, soil, water, trees, and grass -- with 5 samples each. These spectra are plotted in

figures 2-2 through 2-6 on the following pages.
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Figure 2-2 Reflectance Spectra for Selected Urban Targets
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Figure 2-4 Reflectance Spectra of Selected Water Targets
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The modified LOWTRAN 7 was then run with these 25 reflectance spectra at 3
different atmospheres of varying haze. These 75 samples were then regressed via equation
(2-8) and new weighting factors for TM1, TM2, TM3 and TM4 were obtained. These
results are described in section 4.1. For further information on the LOWTRAN input

parameters, the spectral targets, and the sensor parameters please see Appendix H.




2.2.2

Interpolated Input Images

In the original DIRS method, each TM 30m superpixel was replicated into nine

smaller 10m pixels to match the SPOT's pixel resolution (see figure 2-7).

512
pixels
31 9
151 21
512
pixels
— <—
30 m pixels
(a)

Figure 2-7 Pixel Replication

1536
pixels

1536
pixels
>
3 3 31 9 9
3 3 31 9 9
3 3 31 9 9
IS| I5] 15| 21| 21
151 15} 15) 21 21
—>] e

10 m pixels

(b)

(a) 512 by 512 original TM image with 30m pixels.
(b) After replication, the image is now 1536 by 1536 with
10m pixels. The covered ground area is the same.

These replicated TM images were then used as input to the merging algorithm. In

hopes of reducing the subsequent "blocky" appearance in the hybrid images (caused in part

by the blocky input images), a 3 by 3 averaging filter was convolved with the replicated




input images. This simple filtering technique has been used to reduce the blocky
appearance when enlarging images [Bernstein 79}, and when merging multi-resolution
images [Chavez 84, 86]. Thus, given a replicated image as in Figure 2-7, the resultant

input image is shown in Figure 2-8 below.

1 1 1 71719 11| 13

1 1 1 11 11| 13} 15| 17

1 1 1 15y 15 17} 19| 21
(a) 3 by 3 averaging kernel (b) resultant interpolated input

Figure 2-8 Interpolated Input

By using these averaged TM inputs, the merging algorithm does not change,
although the term DCpy,(i) no longer has the same value over the entire superpixel.

For this study, these replicated images that were smoothed by the averaging filter are
referred to as the "interpolated” input images. This term is used to distinguish these images

from other images that will be "blurred”, "smoothed", or "averaged".

2.2.3 A Technique for Radiometric Post-correction

Although tie interpolation of the input data reduces the blocky appearance, the

average of the 9 pixels within the superpixel of the filtered input image may no longer equal
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the original data -- radiometric integrity is lost. In addition, the DIRS method does not
check or enforce whether the average DC within the SPOT panchromatic superpixel equals
the corresponding superpixel in the synthetic TM panchromatic image. Again, the precise
radiometric value is lost.

Rather than alter the basic merging algorithm of the DIRS method (or any method),
radiometric integrity can be restored at the superpixel level by multiplying each hybrid
superpixel (a block of 9 10m pixels) by a correction factor. This correction factor is

defined as:

CF. = — 1M (2-9)
(3} 2 Hybrid()i - 10m
j=1

where:
TM, a9, = DC from one original 30 m pixel from TM band i
Hybrid(j);. 1om = DC from the j-th 10 m pixel (out of 9) from the hybrid

superpixel that corresponds to TM; .

This post-fix operation corrects for differences in the SPOT panchromatic and the synthetic
TM panchromatic images, as well as the radiometric change to the interpolated TM input
images. This correction, however, re-introduces some of the block appearances since the

correction factor is constant over a superpixel.
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2.3  The DIRS Enhancement 1 Merging Method

In a simple effort to reduce the "blocky" appearance of the hybrid data, the DIRS
report suggested implementing a nearest neighbor-type of correction scheme. In this
correction routine, each subpixel was compared to its own superpixel's center value and to

its neighbors center value (see Figure 2-9).

_— corner subpixel
O\ /I/ side subpixel

center subpixel

Figure 2-9 DIRS nearest neighbor correction routine.

Corner subpixels compared values with the diagonal neighbor, and side subpixeis
compared to the adjacent neighbor superpixel's center value. If the subpixel's DC was
closer to its own center pixel's value, then the merging algorithm remained the same as in

equation (2-1):

DCraf1) )

DChiybrid Multibandi) = DCspoT pan
DCSyn TM Pan
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If the subpixel's DC was closer to the neighbor's DC, than the neighbor's ratio was

used in the merging algorithm:

DCNeighbor TM(1) (2-10)

DCHybrid Muliiband(i) = DCspoT Pan -
DCNeighbor Syn TM Pan

The DIRS Enhancement 1 merging method follows this same correction scheme,
except that the corner pixels also compare their values against its adjacent superpixel's
center values (not just the diagonal superpixel). The comparison scheme for one corner

subpixel looks as below:

Figure 2-10 DIRS Enhancement 1 Correction Routine

The superpixel whose center pixel value was closest to the subpixel value contributed
the ratio in the merging algorithm.

The reason why the adjacent pixels were included in the comparison for the corner
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subpixels is because the correlation between adjacent pixels is much higher than between
diagonal pixels [Ahern 86]. This better correlation means there is an increased chance that
a corner subpixel will find a better, more accurate match for substituting ratios. Correcting

the corner subpixels obviously reduces the overall block appearance.

Despite these changes, the DIRS Enhancement 1 method still has several limitations.
These include:

- The center subpixel of a superpixel is never changed and will aiways use its own
ratio.

- Each and every non-center subpixel is checked, regardless if it resides in a non-
varying superpixel, or if the neighboring superpixels have a high variance.

- TM bands 4,5, and 7 are still handled as though they are correlated to the SPOT
panchromatic image.

- Radiometry is still not precisely preserved.

24  DIRS Enhancement 2 Merging Method

DIRS Enhancement 2 is an attempt to correct some of the deficiencies in previous
DIRS methods. This method is described below and can be followed in the flow chart

diagram in Figure 2-12 at the end of this section.

The basic premise of this method is that the high resolution SPOT panchromatic
image provides the spatial information on which segmentation and computational decisions

are made. The inputs to the method are the replicated TM and the SPOT panchromatic

29




images. The SPOT panchromatic image is handled in 3 by 3 blocks which correspond to
the replicated TM input image superpixels.

The steps for each 3 by 3 panchromatic block are outlined as follows:

1. Check to see if the SPOT block is "mixed"” or "pure”. A block is considered
mixed if the variance among its nine pixels is higher than an established threshold. A
"pure” block would be one with a variance lower than this threshold.

a) If the superpixel block is pure, then the DIRS original merging
algonthm (section 2.1) with a post-fix correction routine (section 2.2.3) is run to create the
corresponding hybrid block. This merging operation will be referred to as the "pure
merge" in this algorithm.

b) If the block has a high variance, then the algorithm continues

processing the mixed block.

2. Check if all the neighboring blocks are also mixed. If all are mixed, then the
algorithm defaults to do the pure merge (the original DIRS method) over the superpixel
block of interest. If some of the neighboring superpixel blocks are "pure”, then the

algorithm continues.

3. Connect the panchromatic superpixel. Each subpixel within the pan superpixel is
compared to its adjacent subpixels. If the difference between the 2 subpixels is lower than
a set threshold, then they are considered "connected". If two subpixels are connected, then
each subpixel is allowed to compare to the others adjacent subpixels for further
connections. Thus a network of the superpixel can be constructed. An exploded view of

the potential connections for a center subpixel is shown in Figure 2-11.
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Figure 2-11. Connections between the center subpixel

4. Find the subpixels within the mixed SPOT block that can be matched to a pure
neighboring superpixel. A match can occur when the subpixel DC and the neighboring
superpixel's mean value are within a set threshold. Rather than limit the subpixels to
compare only with those neighboring superpixels they can touch (as in DIRS Enhancement
1), this method also allows the subpixels to compare to any of the eight neighboring
superpixels provided that: (a) the neighboring superpixel is pure; and (b) the subpixel can
be "connected" to the superpixel. If the subpixel has more than one superpixel to which it
could be matched, then the superpixel whose mean value is the closest to the subpixel value

is chosen. These matched subpixels are then referenced as "pure” subpixels.
5. Create the corresponding TM hybrid subpixels by merging these pure subpixels

using the matching superpixel’s ratio and correction factor. This merge is similar to the

DIRS Enhancement 1 method by substituting ratios of neighboring superpixels.
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6. Derive a new TM value for the remaining (mixed) subpixels by removing the

hybrid values computed in the step before. This can be described as:

9. (TM;) - Y, hybridi(j)
o j=1 ]
NewTM; = (9 - n) 2-1D)

where:  NewTM, = NewDC for the remaining (mixed) subpixels within
the superpixel of interest in TM band i;
TM;, = Original DC of the superpixel of interest in TM band i;
n = number of pure subpixels;
hybrid,(j) = those hybrid subpixels computed from the pure sub-
pixels;
If all the subpixels were found tc be pure, (n = 9), then this step is skipped to step

10.

7. Check to see if the new TM values are valid. The new TM values cannot be less
than O or greater than 255.

a) If the values are invalid, then the least pure hybrid subpixel is removed
and reclassified as a mixed subpixel. The least pure hybrid subpixel is the subpixel which
has the largest difference between itself and its matching superpixel mean. The least pure
hybrid subpixel will continue to be removed until there are no pure hybrid subpixels left, or
new valid values for TM are computed. If there are no pure hybrid subpixels left, then the

algorithm defaults to do a pure merge on the superpixel.

8. Compute a new synthetic ™, . value for the remaining subpixels using the new
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TM DCs. Using the new valid TM DCs and the weighting factors developed in section

2.1.1, the new synthetic TM panchromatic can be described as:

4
NewTMsynpan = 9, Wi X NewTM; (2-12)

i=1

9. The remaining subpixels are now merged using the new TM DC and the new

synthetic ™, DC using the same basic DIRS algorithm:

DChNewTMi)

2-13)
DChnewTMSynPan

DChybrid(i) = DCspPOT Pan (

10. Radiometrically correct these mixed hybrid subpixels generated in step 9 using

the post-fix operation.

11. Check to see if this final hybrid block (pure and mixed subpixels) is
"reasonable”. Some checks for being reasonable are: (a) if the hybrid band is correlated
with the SPOT panchromatic image, the order of the 9 hybrid subpixels should be the same
as the order of the original SPOT subpixels; (b) the standard deviation among the
subpixels of the hybrid superpixel should be within a threshold factor of the standard

deviation of the original SPOT superpixel.

12. If the hybrid superpixel is found to be unreasonable, then the least pure subpixel
is removed and the algorithm returns to step 6. If the hybrid superpixel is found to be

reasonable, then the algorithm is done and a new superpixel is started.




Note that with this new method, the following improvements to DIRS Enhancement

1 were made:

(1) The center subpixel is not constrained to only use its superpixel ratio and
correction factor. If it can match to a connecting superpixel, then the center subpixel can
use the matching superpixel's parameters. In addition, the other subpixels can also match
with any of the eight neighboring superpixels provided that a connection exists between the

two and the superpixel is pure.

(2) Rather than running comparisons for all subpixels, only those SPOT pan
superpixel blocks that are identified as "mixed"” (have a large variance) will be processed.
In addition, only those neighboring superpixels that are pure will be able to contribute their
ratio and correction factor. These changes should help in speed and in avoiding improper

substitutions for superpixel parameters.

(3) Radiometry is preserved. Those subpixels that are identified as ‘pure’ (are
matched to a pure neighboring superpixel) produce the pure hybrid subpixels. The
remaining subpixels are then computed to maintain the radiometric value of the original TM
value. In simplistic terms, it can be described as:

known_answer = pure_values + mixed_valuesg i,

subpix
Given a known answer (original TM value) and the pure subpixel component (determined),

the mixed component is simply what's left.

However, DIRS Enhancement 2 still does not handle the weakly correlated TM

bands 4, 5, and 7 any differently.
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Figure 2-12  Flow Diagram of DIRS Enhancement 2 Merging Method
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24.1 A Modification to the DIRS Enhancement 2 Method

This small modification is a quick fix to handle the TM bands that are weakly
correlated to the panchromatic image. For this modification, the only change to the DIRS
Enhancement 2 method is to the "pure merge” operation for the weakly correlated bands.

Instead of pure merging these bands using the DIRS method:

i DCmmli
DChybrid Multibandi) = DCSPOT Pan - __M)

DCsyn TM Pan

the hybrid value now simply takes the value of the original TM superpixel:

DCHybtid Uncorrc‘xalchand(i) = DCTM(i)

Thus if a subpixel is matched to a neighboring pure superpixel, the hybrid subpixel for

these weakly correlated bands would contain the TM value for that matching superpixel.

All other (correlated) bands are manipulated in the identical fashion as before.

These methods described so far in section 2 are variations of the basic DIRS merging
algorithm. The remainder of this section describes Price's merging method and some of its

variations. The results of all these methods will be presented in section 4.
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2.5 Price's Merging Technique

Price's technique for merging multispectral and panchromatic images is split into two
cases. The first case is for multispectral bands that are correlated with the panchromatic

image. The second case is for weakly correlated bands.

2.5.1 Case 1 -- Correlated Input Images

Because the images are correlated, the relationship can be described as linear. On an
individual band basis, the linear coefficients can be determined using a simple linear
regression. This is illustrated in Figure 2-13, where the DCs of an averaged SPOT

panchromatic image are plotted against the DCs of a Thematic Mapper (TM) band.

™ ™ = (a X Pan ) + b

Pan
ave

Figure 2-13. Linear Regression of TM bands and the Panchromatic Image

where: TM; = DC of a superpixel in the TM i-th band;
Pan, . = the average of the DCs in the corresponding superpixel
of the SPOT panchromatic image;

a;, b; = linear coefficients for the i-th TM band.




After solving for a; and b; we can compute a high resolution estimate of the i-th band

using the original high resolution panchromatic channel:

'I/‘I\\/li = a; - Panjpy, + b (2-14)

The merging algorithm then uses the high resolution estimate to create the hybrid image:

Hybrid, = o (2-15)
TMi-avc
where: Hybrid; = DC of the hybrid i-th band;

T™; = DC from the original TM i-th band;
ﬁm = DC from the high resolution estimate of TM i-th band;
ﬁh_aw = average of the DCs in the corresponding T/Mi image

corresponding to the TM; pixel.

For example, the merging of TM multispectral images (30 m GIFOV) with a SPOT

panchromatic image (10 m GIFOV), is illustrated below in Figure 2-14:
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Note the similarity to Pradines' method, except that Price is using an estimate of a
multispectral band instead of the panchromatic data directly for the merging operation. In

addition, Price’s resulting hybrid image has an average DC the same as the original
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multispectral band, while Pradine has the sum of the hybrid DCs equal the original
multispectral value. Finally, Price suggests a method to handle multispectral bands that are

weakly correlated with the panchromatic channel.

2.5.2 Case 2 - Weakly Correlated Bands

Because some bands are not linearly related (ie visible and near infrared channels), a
more general relationship was used by Price. After registering the images, Price again
averaged the panchromatic channel to the same spatial resolution as the multispectral
images. Price then computed the expected (mean) value for the weakly correlated band for
each given value in the 30m panchromatic image.

For example, Price would find all the pixels in the 30m panchromatic image that had
a DC of X (0 to 255). He would then find the average of the DCs of the corresponding
pixels in the weakly correlated band. Thus a simple look-up-table (LUT) can be generated.
This process is depicted in Figure 2-15 on the following page. Using this LUT, a high
resolution estimate of the multispectral band can be computed from the original high
resolution panchromatic image. This high resolution estimate is now used as in the

correlated case, and is merged with the original multispectral data.

2.5.3 Price's Results

Price tested his procedure using SPOT simulation data with a 10 m panchromatic and
three 20m multispectral channels. He then averaged the channels to obtain 20m
panchromatic and 40m multispectral channels. Applying the above procedures to the
averaged data, Price produced hybrid 20m values which were then compared to the original

(true) values at 20m resolution.
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Figure 2-15  Creation of a Look-up Table (LUT)
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Multispectral channels 1 and 2 were highly correlated with the panchromatic channel,
and produced residual errors of around two digital counts. This is quite accurate since the
standard deviation of the original data was around 20 DCs.

For the third channel which is not correlated, the procedure was only "moderately
successful”. The predicted values accounted only for about 75% of the variance in the
original data, as compared to 99% in the correlated case.

Price did not test the effect his technique had on classification accuracy.

2.6 Price Modification -- A Method of Handling Weakly Correlated Input

Images

One of the biggest concerns in all of the merging techniques to date has been the
merging of multispectral images that are weakly correlated with the reference panchromatic
channel. In our case, TM bands 4, 5, and 7 are not strongly correlated with the

panchromatic channel.

This modification to Price's technique implements a method by Tom et al {85]. In
his paper, Tom improved the spatial resolution of the TM band 6 from 120 m to 30 m using
the other TM bands. His technique is based on an adaptive multiband least squares method
which computes an optimal image estimate. His approach relies on the assumption that
registered TM data are correlated across the bands in small local areas. By using the local
correlation property, Tom used visible and IR bands to predict the thermal IR image data
(band 6) in 30 m resolution. The thermal image estimate was formed by a weighted linear

combination of reference images in which the weights changed adaptively over the entire
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1mage.
By modifying Tom's technique, we could obtain high resolution estimates of TM
bands 4,5, and 7. To compute the high resolution TM band 7 estimate, the adaptive

multiband enhancement procedure would take these general steps:

(1) Average filter the panchromatic channel to obtain 30 m resolution.

(2) Using the averaged 30 m panchromatic image and the original TM 1, 2, and 3
images as input, we can implement the adaptive least squares method to generate the linear
prediction coefficients for band 7 at each pixel location. For a given location of the sliding

3 by 3 window, we can represent this as:

lr ™7, ] 1 ™1, TM2; TM3; Panm bo €
T™7; | 1 TMIl, TM2, TM3, Pan, | |b e
TM7; | = TMIl3 TM2; TM3; Pany | |ba| +|e€3 (2-16)
: : : : : : b3 L
T™7, I TMIg TM2 TM3y Pang | Lbal Les]

The least sovare solution is computed by solving for the set of coefficients (the vector b)
that minimizes the error vector (e). Note that each pixel location will have its own set of
coefficients. One way to handle this data is to have matching coefficient "images" for each
input/reference image.

(3) Obtain 10 m resolution estimates of TM bands 1, 2, and 3 by previous methods.
(i.e., Price or DIRS methods)

(4) Generate an optimal estimate of TM band 7 using the prediction coefficients and
the high resolution input images (panchromatic, Hybrid bands 1, 2, 3). For each 10m

pixel this can be represented as:
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T™7 = (by- Hyby)+(by- Hyby)+(bs- Hybs)+(bs-Panjom)+bo (217

where Hyb, , Hyb, and Hyb, are the 10m hybrid pixels derived from using

Price's technique for correlated bands.

(5) Merge this high resolution estimate of TM band 7 with the original band 7 using

Price's method with correlated images (section 2.5.1) to obtain a 10m Hyb, image.

After obtaining Hyb,, we can use this band as another input reference to compute
Hybs. As before, a vector b is determined, this time with one more dimension for the

additional input reference image.

-

TMS 1 TMIL TM2i TM3; TM7; Pam ;" 3

™S5, | ™1, TM2, TM3, TM7, Pan, by €2 .18

T™MS; | =| 1 TMI; TMZ TM3; TM7 Pang || )+ e (2-18)
: : : : : : : b :

TM5, 1 T™Ilg TM2 TM3; TM7, Pang b: eg

With this vector b, the high resolution estimate for TM5 can be computed similar to

equation (2-17):

T™5 = (by- Hyby)+(by- Hyby)+(bs- Hybs)+

(bs: Hyby) +(bs-Pan;om) + bo (2-19)

The hybrid image for TMS is then obtained by merging this high resolution estimate of
TMS with the original TMS image using Price’'s method with correlated images. Once the
hybrid for TM5 (Hyby)is found, this band as well as Hyb, are used to compute the high
resolution hybrid for TM band 4.
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The order of computing band 7, 5, and then 4 is chosen because this is the order of
decreasing band correlation with the panchromatic image. Tom et al [85] additionally
showed that increasing the number of input reference bands decreased the high resolution
estimate error. Therefore, band 4 -- the weakest correlated band -- is computed last to use

the 2 additional reference bands.

Section 2 described the two primary methods of merging that are investigated in this
study -- the DIRS and the Price methods. In addition, several modifications and
enhancements have also been introduced. The following section describes how these

metiods were tested and compared.
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3.0 EXPERIMENTAL APPROACH

In comparing these merging methods, several variations of the input images were
used. These variations are described in section 3.1. The two primary tests for evaluation -
- classification accuracy and radiometric error -- are described in sections 3.2 and 3.3

respectively. Finally, the procedure for this study is presented in section 3.4.

3.1 Selection and Preparation of Test Imagery

The SPOT and TM images selected for this study are the identical images used in the
DIRS proof-of-concept study [Warnick 89]. The images were selected from a scene of
greater Rochester, NY, acquired in June of 1987. The acquisition and ephemeris data for

these scenes are presented below:

Table 3-1
Scene Acquisition and Ephemeris Data [from Warmnick &9]

Scene
Parameter SPOT Pan Landsat-5 TM
Date 10 June 87 15 June 87
Time of Day 16:06:21 GMT 15:26:01 GMT
Sensor View Angle 9.7° --
Sun Elevation 65.9° 59.0°
Scene ID 16182638706101606211P YS120115221X0
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Some of the image statistics are listed in Table 3-2 :

Table 3-2
Scene Statistics

Band mean (DC) Std Dev
™1 98.14 13.55
™2 39.94 7.49
™3 41.40 12.73
™4 97.82 21.85
T™S 81.36 17.08
™7 31.64 11.23
SPOT 47.74 11.98

3.1.1 Registration of Images

The SPOT panchromatic image was registered to the TM data set on two separate
occasions using two different transformation coefficients. This provided two variations of
the SPOT image to use in comparing the merging techniques. With their differences in

registration, some of the effects of mis-registration can be addressed.

The SPOT panchromatic image is registered to the lower resolution TM data set to
preserve the multispectral information. Registration is conducted by first selecting ground
control points in both the panchromatic and TM images. The geometric transformation
coefficients are then computed using multiple regression techniques on the selected control
points. With these coefficients, the panchromatic image ic geometrically resampled using

cubic convolution. For more information on standard registration techniques, refer to
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Schowengerdt [83] or the ERDAS Users Guide.

For the DIRS proof-of-concept study, the SPOT panchromatic image was registered
to the TM data set using a first order transformation matrix. Eighteen ground control points
were used to determine the coefficients. Using these control points and the coefficients, a
residual analysis determined that a maximum error of 0.916 SPOT pixels (or 9.16 meters
of error) remained after the transformation of these control points. These transformation

coefficients are shown in table 3-3.

Table 3-3
Transformation Coefficients used for the Resampling of the SPOT Image
for the Original DIRS Study
Coefficient X y
Intercept 474.6330 275.7023
X 0.01939835 0.9500315
Y 0.9497908 -0.0191019

Another set of transformation coefficients were computed in an effort to reduce the
registration error. Sixteen ground control points were used to solve a second order
transformation. The resultant residual analysis showed that the maximum error dropped to
0.459 SPOT pixels, or less than 5 meters of error. These coefficients are shown in Table

3-4 below.
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Table 3-4
New (second order) Transformation Coefficients
used for the Resampling of the SPOT Image

Coefficient X y

Intercept 0.3064387 0.2884292
X2 0.9446802 0.0203343
XY -0.0195416 0.9464509
Y? 0.0032847 - 0.197969
X - 0.0012493 0.825885
Y 0.1723889 0.196619

3.1.2 Blurred Image Sets

The original SPOT and TM images were blurred to 30m and 90m GIFOV
respectively. By using these lower spatial resolution images as input for the merging
techniques, each algorithm can be compared and evaluated as to how well it "recovers"” the
original (30m) TM images.

Since the ground instantaneous field-of-view (GIFOV) is used as the measure of
spatial resolution, the method of blurring these image sets should be consistent with its use.
The definition of GIFOV is simply the projection of the limiting detector aperture onto the
ground. Optical blur and electronics are not taken into account. Thus to simulate an image
acquired with a lower resolution system, the pixels that extend over the new, lower
resolution projection (or footprint) are averaged to get a mean signal over the area. This

mean value is then replaced into all the pixels under the area, or the block is subsampled to
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get one pixel that represents a larger area (a superpixel) that contains the mean value. This
averaging over the "superpixel” of interest assumes a linear radiance mixing model which
has been found to be a reasonable approximation [Merickel 83, Chhikara 84].

Thus to blur a SPOT 10m GIFOV image into a 30m image, nonoverlappping, 3 by 3

blocks of 9 pixels are averaged to get one 30m superpixel.

3.13 Figures of Images

The following figures show the original TM data set at 30m GIFOV, the blurred TM

data set at 90m GIFOV, and the original SPOT image after registration to 0.459 pixel error.
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Figure 3-1  Original TM (30m GIFOV) bands 5, 3, 2
displayed in RGB
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Figure 3-2  Blurred TM (90m GIFOV) bands 5, 3, 2
displayed in RGB
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Figure 3-3  Original SPOT panchromatic image (10m GIFOV)
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3.2 Classification of Test Imagery

All the data sets are classified using the standard Gaussian Maximum Likelihood
(GML) classifier with eight bands of input. These eight bands are comprised of the TM
bands (or hybrid equivalent) 1, 2, 3, 4, 5, and 7, as well as a 5/3 ratio band, and a texture
band. The texture band is a statistical feature band computed from the equivalent TM band
4. Each pixel in the texture band is the standard deviation of the DCs in a 3 by 3 window

around the corresponding pixel in the equivalent band 4.

3.2.1 Training Samples for Classification

All the data sets are classified using the same training sites. The training sites were
carefully chosen to get the best classification of the original TM data set, while permitting
the blurred TM data set (90m GIFOV) to also classify well. The majority of the training
samples were selected from the original 30m data set with special considerations to ensure
that the sample remains "pure” when blurred to a lower resolution. However. it was found
that a few training samiples taken in highly busy areas were required for adequate
classification accuracy of the original TM data set..

In all, there were 17 classcs to which the GML classifier could segment -- 4 classes

of urban, 1 class of soil, Z classes of water, 5 classes of trees, and 5 classes of grass.
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322 Mecasuring Classification Accuracy

After classificanon, the classified image is recoded from 17 separate classes into the
5 primary classes: urban, soil, water, trees, and grass. These classified mmages are then

subjected to one or more of the following accuracy tests.

(1 Classification Accuracy using a Random Data Set. In this mtcractve
test, random pixel locations for cach class are chosen from the classtticd mimage “These
pixels lecanons are then presented to the user who s viewing the organal (or aregistered,
higher resolution) data set The user classities the pixel at that locanon. 1 the user s
unsure of the class to which the pixel belongs, then the user can opt o discard that pinel
The program will then randomly select another pixel Tocation. A confusion matriy s then
constructed plottimg these user inputs as ground truth, against the results of the classitied

muge.

(2) Classification Accuracy using Independent Data Set 1o This data set
has user selected sample areas (rather than random pixels) agamnst which classtticanon s
cheched. Ttis an independent data set o that none of the samples comes from the training
set. The advantage to this test s that the same pixel classifications can be quickly compared
against all techniques. The disadvantage to this technigue is that the selected data setmay

not be a far representation of the classification.,

(3) Classification Accuracy using Independent Data Set 20 Thas

independent data set was specifically designed to test the spatial resolution of the classitier
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Rather than using selected sample areas as in Independent Data Set 1, each sample was
selected one pixel at a ume. Fifty samples per class were chosen. Al samples were
selected in areas where tiner spatial resolution would help -- examples include urban pixels
taken from minor side streets, trees within suburban areas, and pixels near boundaries or

edges. As an independent data set, the same advantages and disadvantages apply.

3.2.3 Testing the Significance of Overall Classification Accuracies

Using the contusion matrix obtaned trom any of the three accuracy tests above, an
overall classthication accuracy value can be computed for a classitied mape. For this
study, the overall classification accuracy s detimed as the average of the percent conrectly
classitied tor each cliss el the average of the diagonal of the contusion .

For those accuracy tests with an equal number of samples per cliass (Random and

Independent Data Set 2y, two statistical tests of significance can be conducted

The tirst testas a check whether the overall classification accuracies trom cach of the
methods are statisncally Gagnificantly) difterent trom one another. Using anos e table
analysis as presented by Freund [88], a chi square (¢7) value is obtained. I 37 18 Larges
than a threshold 37 (based on degrees of freedom and significance level), then the miethods

can be considered ditferent from one another. An example is presented i Appendin G

The second test determmnes i a merging method prodeces an overall classitication
accuney that s statistically better than the cisstheation accuracy obtmed frong the imput

(un micrpedy TM data set Tos test cateuliates a thireshold clinsthicanon acomacy value,
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above which is considered significantly different from the classification accuracy obtained
from an un-merged TM data set. The threshold value is computed using standard test
statistics conceming the difference between two proportions [Freund 88]. An example is

presented in Appendix G.

3.3 Radiometric Error Analysis

Radiometric error analysis is conducted on the hybrid data sets when the input
images are the blurred SPOT panchromatic (30m GIFOV) and the blurred TM data set
(90m GIFOV). These hybrid data sets (at approximately 30m GIFOV) can now be
compared to the original TM 30m data to see how well they "recovered” the true TM

values. For each band, error is measured as:

Y (Hybrid(j) - TM()P
j= 1

. 3-1)

where: Epc  is the RMS error in digital counts (DC);
Hybrid(j) is the hybrid DC at pixel j;
TM(j) is the original TM DC at pixel j; and
n is the number of pixels used in the error calculation

(generally all the pixels in the image).

Because each band has different DC distribution characteristics (i.e., mean value,

standard deviation, etc). comparing the RMS error in DCs among the various bands is not

57




appropriate. A better means of interband comparison (as well as inter-image comparison)

is to express the error in reflectance units rather than in digital counts.

Computing the Error in Reflectance Units

The error can be computed in reflectance units if reflectance data is available. For
this study, the error in reflectance units is computed for bands 1, 2, 3,and 4. The method
is as follows:

(1) Several control points on the original TM data set (bands 1..4) are identified and
their digital counts (DC) are recorded.

(2) A reflectance unit is then estimated for that particular point at the bandpass of the
sen;or based on standard reflectance curves. (see figures 2-2 to 2-6)

(3) The DCs for each band and their respective (estimated) reflectance values are

then linearly regressed to determine the best fit line. The line can be described as:

DC;, = my1; + b (3-2)
where:
DC, is the digital count in band i;
m, , b, is the slope and offset of the best-fit line for band i; and

r, is the estimated reflectance for the digital count.

(4) Using the slope m found above, along with €y , the error in reflectance units

can now be computed as:

g = EDC (3-3)




3.4 Running Methods and Modifications
This section describes the parameters (such as threshold limits) that were used for

this study.

34.1 Running DIRS Enhancement 2

In this method, the panchromatic image is grouped into 3 by 3 blocks that
correspond to the TM superpixels. The standard deviation of each 9 pixel block is
computed. The average of all these block standard deviations (Xg), as well as the standard
deviation of these block standard deviations (G) are then computed and presented to the
user. The user is prompted to enter a standard deviation threshold value to differentiate the
pure from the mixed 3 by 3 blocks. Those blocks that have a standard deviation greater
than the threshold are considered to be mixed. Those panchromatic blocks that have a
standard deviation less than the threshold are considered pure.

For the SPOT panchromatic image, the following are the block standard deviation

statistics and the threshold standard deviation used:
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SPOT registration error of 0.916 pixels
Original SPOT image (10m GIFOV):  5§.311 4335  8.235
Blurred SPOT image (30m GIFOV):  5.788  3.793  8.347

SPOT registration error of 0.459 pixels
Original SPOT image (10m GIFOV): 4.891 3952  7.559
Blurred SPOT image (30m GIFOV):  5.575  3.682  8.060

The thresholds were chosen so that approximately 25% of the blocks would be classified as
‘mixed. These thresholds can be calculated by assuming that the standard deviation of the
blocks follow a normal distribution. Thus, by providing a z-score, the threshold can be

computed using the standard (z-score) equation and tables
z = (O - Xo)/ 04 (3-4)

For a mixed block rate of 25%, Z, = 0.675 ; and the threshold, Gy Can now be

comrp ated.

This o} is also used to determine if a subpixel is connected to another subpixel, or if
it car be matched to a neighboring superpixel. It can be shown that the standard deviation
between two values is equal to the absolute value of their difference divided by the square

root of two (Appendix I):

- X -
G2 = ,XI{T?J ()

-
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If 0, , is smaller than G, then the two samples are considered connected.

3.5 Experimental Procedure

The experimental procedure is broken down into three parts. In the first part, the
merging methods were run on blurred resolution image sets -- the SPOT panchromatic
image and the TM bands were blurred to 30m and 90m GIFOV respectively. The hybrids
were evaluated on radiometric error and classification accuracy.

In the second part, the methods were again tested using blurred image sets. but the
input SPOT image was the image that had a registration error of less than 5 meters. In this
manner, the differences in results from Part 1 and Part 2 can be attributed to registration
differences.

In the third part, the methods are run on original resolution images and the hybrids
are evaluated on classification accuracy alone. In all three parts, the classification
accuracies of the hybrids were compared to the classification accuracy of the un-merged
(input) TM data set. Whenever possible, the hybrid classification accuracies were
evaluated to see if they were significantly different than the un-merged TM data set

classification accuracy.

3.5.1 Part 1 -- Merging with Coarser Resolution Input Data Sets

In the first part, 10 of the merging methods were run on the blurred image sets. The
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TM data set was blurred to 90m and the SPOT panchromatic image (0.916 pixel
registration error) was blurred to 30m. These 10 methods were the:

(1) DIRS original method;

(2) DIRS method with the new synthetic panchromatic image;

(3) DIRS method with the interpolated input *.

(4) DIRS method with the interpolated input and post-fixing *;

(5) DIRS Enhancement 1 method *,

(6) DIRS Enhancement 1 method with post-fixing *;

(7) DIRS Enhancement 2 method *;

(8) DIRS Enhancement 2 method with TM4 modification ~;

(9) Price's method (with a look-up table for TM4, TMS5, TM7): and

(10) Price’'s modified method (with adaptive weighting).

* . « .
-- uses the new synthetic panchromatic image.

For a quick review, Table 3-5 contains a brief summary of each of these methods.

The hybrid data sets, as well as the blurred and original TM data sets, were then
checked for radiometric errors, and classified. Classification accuracy was determined
using independent data set 1. Those methods that provided the most encouraging and

interesting results were then selected for further testing.




Table 3-5

Summary Table of Merging Methods

Method

Comments

1 - DIRS Original Method

2 - DIRS with new
synthetic pan image

3 - DIRS with
Interpolated Input

4 - DIRS with Interpolated
Input and Post-fixing

6 - DIRS Enhancement 1
with Post-fixing

8 - DIRS Enhancement 2
with TM4 mod

10 - Price's Modified Method
(adaptive weights)

DChybria(i) = DCspOT pan (
(section 2.1)

DCrMm() )
DCsyn T™ Pan

Replace DCSyn TM Pan with DCNcw Syn TM Pan
(section 2.2.1)

Takes output from (3) and past-fixes -- ensures that
the average of the hybrid superpixel area equals the

Same as (1) but substitutes the superpixel ratio with
a neighbor superpixel ratio if the subpixel is closer
to the neighbor's center scbpixel value. (section 2.3)

Takes output from (5) and post-fixes.
(section 2.3 and 2.2.3)

...............................................................

Segments the superpixel based on the pan image
and on user input thresholds. (section 2.4)

................................................................

Only weakly correlated bands are handled differently.

The hybrid subpixel takes the value of the original
TM DC (or a neighboring TM DC) (section 2.4.1)

Creates a hi-res estimate of the band, then post-fixes.
Correlated Bands -- estimate created by linear
transform of pan image.

Weakly Correlated Bands -- estimate created by LUT.

(section 2.5)

Same as (9) except when obtaining estimate for
weakly correlated bands. Instead of LUT, uses
adaptive weights. (section 2.6)
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3.5.2 Part 2 -- Merging with Coarser Resolution Data Sets with a

Lower Registration Error

In this phase of the study, six of the methods were again tested at the blurred
resolutions, but the input SPOT image was the image that had a registration error of less
than 5 meters. The resultant hybrid data sets were then radiometrically checked and the
classification accuracies were determined using both independent data set 1 and a random

data set.

3.53 Part 3 -- Merging with Original Resolution Data Sets

This last phase used the original resolution data sets to create hybrid data sets with

approximately 10m GIFOV. The classification accuracies of these hybrid data sets were

then determined using the independent data sets 1 and 2, as well as a random data set.
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4.0 RESULTS

4.1  Creating the New Synthetic Panchromatic Image

The weights for TM bands 1 through 4 using the technique described in section

2.2.1 are:
Oy = -0.0134;
Opp = 0.6417;
Opp = 0.3175;
Opps = 0.0311; with an 2 value of 0.9999

Because TM bands 1, 2, and 3 are highly correlated to one another, there is
redundant information between them. Because of this, TM1 only provides a weak
contribution to the overall weighting. Since TM1 contributes a relatively small, and
negative amount, the regression was run again this time without TM1 as an input. These

weightings are now:

O = 0.5931;
Wr; = 0.3310;
Wy = 0.0345; also with an r? value of 0.9999

A summary chart is shown below:




Table 4-1
Summary of Weighting Factors used to Generate the TM Panchromatic Image

DIRS weighting LOWTRAN Set 1 LOWTRAN Set 2
T™I1 0.0617 -0.0134 --
™2 0.4550 0.6417 0.5931
™3 0.3818 0.3175 0.331C
™4 0.1015 0.0311 0.0345

The resultant TM panchromanc images have the following characteristics:

Table 4-2
Summary of the Histogram Statistics for the Panchromatic Images

Mean Std Dev
 OriginalSPOTpanimage  a1m 1197635
SPOT pan image blurred to 30m 47.71 10.08628
TM pan image (DIRS weighting) 49.96 8.35087
TM pan image (LOWTRAN 1 weighting) 40.50 8.37877
TM pan image (LOWTRAN 2 weighting) 40.77 8.33082

Since the the differences between the two LOWTRAN-derived weights are minimal,
the second set of weights (without TM1) was used to create the synthetic TM panchromatic

image.
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The SPOT pan image is then linearly adjusted to the TM synthetic pan image to
account for the atmospheric differences between the acquisition times. The coefficients for

the linear adjustment are determined as:

where: G, , Xz are the standard deviation and the mean of the TM pan image;
0, , X; are the standard deviation and the mean of the SPOT pan

image to be adjusted.

The SPOT image can now be adjusted as:

SPOTadjusled = m: SPOTo,ig + b
A quick check was done to see if there was a difference between using the blurred SPOT

pan image statistics or the original pan image statistics (to provide 6, and x;) to derive the

linear coefficients for atmospheric adjustment. These results are summarized below:

67




Table 4-3
Summary of the Linear Coefficients used for Adjustment

m b
Original SPOT input:
LOWTRAN syn TM pan 0.6956 7.5826
DIRS syn TM pan 0.6973 16.6928
Averaged SPOT input:
LOWTRAN syn TM pan (.8260 1.3637
DIRS syn TM pan 08279 10.4588

These adjusted SPOT images were then blurred to 30m and compared to the syvnthetic TM
pan image. To obtain hybrid images that are radiometrically precise, there should be no
difference between the blurred, adjusted SPOT pan image and the synthetic TM pan image.

However, there were some RMS error differences as shown in Table 4-4:

Table 4-4
Summarv of the Error Differences

error normalized
RMS error (DC) to input image

Ornginal SPOT input:

LOWTRAN syn TM pan 3.77 5.42

DIRS syn TM pan 3.97 5.69
Averaged SPOT input:

LOWTRAN syn TM pan 3.80 4.60

DIRS syn TM pan 4.04 4.87
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These results indicate that the synthetic TM pan image created from the LOWTRAN-
derived weights will provide a better radiometric hybnd than from the TM pan image using
the DIRS weights. In addition, it initially appears that using the original SPOT image to
derive the adjustment coefficients gives slightly better radiometric results.

However, these results may be due simply to the standard deviation of the images
used to obtain the coefficient m. The larger m is, the more variation in the adjusted SPOT
image, and the larger the difference is between the adjusted SPOT image and the synthetic
TM pan image. Thus, if either o, gets larger, or if 0, gets smaller, m beco nes larger and
so does the error. These errors in DC can be converted to DC error in the SPOT input by
dividing by their respective m's (similar to computing the reflectance error in section 3.3).
With these normalized errors shown in the second column in Table 4-4, the linear
coefficients derived from an averaged SPOT pan image now results in jower errors.

Despite which synthetic TM pan image is used, however, it is apparent that

radiometry will not be exactly preserved if the DIRS merging method(s) are unchanged.
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4.2  Computing the Error in Reflectance

Over 30 control points were taken over the original TM data set (bands 1..4). These

points are listed below.

Table 4-5
Selected Control Points

Screen Location T™M1 DC ™2 DC TM3IDC TM4 DC
Roadl 102,71 100 38 43 41
168,48 101 37 41 41
75,80 96 35 38 44
59,82 105 42 46 48
Road2 297,167 119 49 60 53
304,178 116 49 60 55
309,185 115 47 58 57
Concrete 417,41 174 77 101 77
502,333 187 79 110 86
422.6 182 81 100 81
Soil 221,402 125 62 88 85
225,385 125 59 86 91]
222,395 123 58 85 80
258,439 126 60 89 86
Water 142,327 81 31 27 6
37,449 84 31 27 8
261,84 98 32 23 11
267,78 95 31 20 13
220,44 81 30 26 9

(Table 4-5 continued on the next page)
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Table 4-5 (continued)

Selected Control Points

Screen Location

T™M2DC

295,55
129,144
94,232
110,157

Grassl 285,374
247,387
180,404
287,368
143,480

Grass?2 150,406
215,381
233,468

T™M1 DC
82 29
81 29
80 28
81 32
82 29
92 39
88 35
92 4]
90 39
91 39
95 43
93 39
89 39

TM3DC TM4DC

26
24
22
25
24

36
32
40
35
35

40
36
32

116
127
117
128
124

155
148
14%

The subgroups under Table 4-5 were then averaged and their reflectances were

estimated for each band. The reflectance estimates were based on the spectral curves

shown in Figures 2-2 through 2-6. These results are listed in Table 4-6 below.
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Table 4-6
Averaged DC and Estumated Reflectance

& A5 A | A

DC % 1 DC %r DC %r DC %r
Roadl 101 8 38 10 42 11 43 13
Road2 117 10 48 12 59 15 55 17
Concrete 181 19 79 24 104 25 81 28
Soil 125 12 60 17 87 20 86 35
Water 88 6 31 5 25 6 9 2
Trees 81 5 29 6 4 11 133 55
Grassl 01 7 39 9 36 9 122 44
Grass2 92 7 40 9 36 9 150 62

The four separate plots and regressions for Table 4-6 are shown in the figures on the

following pages.




TMt1 DC

TM2 DC

200
180 - y = 43.235 + 7.1638x
. RA2 = 0.995
160 ~
140
120 S
100 ~
80 T Y
0 10 20
Reflectance
Figure 4-1 Plot of TM1 DC versus estimated Reflectance
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Figure 4-2  Plot of TM2 DC versus estimated Reflectance
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Figure 4-3  Plot of TM3 DC versus estimated Reflectance
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Figure 4-4  Plot of TM4 DC versus estimated Reflectance
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Thus, to transform the error from DC to reflective units:

. - EDpCi
Eri m;

where: 1 isthe TM band 1..4; and

m, = 7.1638;
m, = 2.6496;
m; = 4.4720;
m, = 2.2844

4.3 Results for Part 1 -- Merging with Coarser Resolution Input Sets

In this part of the study, 10 of the merging methods were run on the blurred image
sets. The TM data set was blurred to 90m and the SPOT panchromatic image was blurred
to 30m. The summary of these results are shown in Tables 4-7a through 4-7¢ on the

following pages. For the further details on these results, refer to Appendices B and C.
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Table 4-7a
Summary of Classification Breakdown by Percentage (30m hybrid)

urban  soil water  trees grass

Original TM (30m) 4234 332 0353 34.17 19.64
Blurred TM (90m) 66.48 1.30 0.49 8.23 23.49
DIRS Method

- Orig Syn Pan 55.38 4.64 1.26 15.87 22.86

- New Syn Pan 56.25 3.38 1.03 12.80  26.56

- Interpolated Input 47.06 1.66 0.69 25.65 24.94

- Interpolated and

post-fixed 50.53 1.71  0.66 14.50  32.60

DIRS Enhancement 1

- No post-fix 4199 0.35 0.6l 12.50  44.58

- With post-fix 47.84 (.68 0.63 15.58  35.27
DIRS Enhancement 2

- No modification 5427 193 0.73 1470  28.37

- modified for TM4,5  50.21 3.61 0.77 12.00  33.42
Price Method

-LUT 39.51 419 1.12 16.07 39.11

- Adaptive Weights 4523 251 1.34 1297 3998
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Table 4-7b
Summary of Classification Accuracy with
Independent Data Set 1 (30m hybrid)

urban  soil water  trees grass overall ave

Original TM (30m) 92.5 100.0 623 619 99.1 83.2
Blurred TM (90m) 73.6 0 302 377 90.9 46.5
DIRS Method

- Orig Syn Pan 63.2 100.0 88.7 149 94.2 72.2

- New Syn Pan 96.2 96.7 100.0 27.2 93.6 82.7

- Interpolated Input 95.2 100.0  100.0 51.0 99.1 88.5

- Interpolated and

post-fixed 96.2 100.0 88.7 223 99.7 81.4

DIRS Enhancement 1

- No post-fix 76.4 85.2 90.6 9.9 97.9 72.0

- With post-fix 962 934 98.1 193 99.7 g1.3
DIRS Enhancement 2

- No madification 98.1 95.1 77.3  29.7 93.6 78.8

- modified for TM4,5  90.6 96.7 88.7 39.6 994 83.0
Price Method

-LUT 71.7 96.7 98.1 48.0 99.1 82.7

- Adaptive Weights 76.4 93.4 88.7 29.2 99.1 77.4

urban + soil + water + trees + grass
5

where: overall ave =
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Table 4-7
Summary Table for 30 m Hybrid Results

Classification
Accuracy using
Independent Data Set 1 Total RMS Error (DC)

Original TM (30m) 83.2% reference
Blurred TM (90m) 46.5% 45.8
DIRS Method

- Orig Syn Pan 72.2% 47.8

- New Syn Pan 82.7% 51.2

- Interpolated Input 88.5% 50.8

- Interpolated then 81.4% 43.6
post-fixed

DIRS Enhancement 1

- No post-fix 72.0% 49.7

- With post-fix 81.3% 43.5
DIRS Enhancement 2 78.8% 44.6

- modified for TM4, 83.0% 43.6
™S

Price Method

- LUT for TM4, 5,7 82.7% 43.1

- Adaptive weights 77.4% 38.4
for TM4, 5,7

where:

urban + soil + water + trees + grass

Classification Accuracy = overall ave = 5

Total RMS Error = €441 + €panaa * Ebandd + Eband4 * Ebands + Evana?
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4.3.1 Observations from Part 1 -- Merging with Coarser Resolution Input

Sets

Visible interpretation markedly improved as did classification accuracy (using
independent data set 1). In every case classification accuracy increased from 46.5% to at
least 72.0%. In several cases, the classification accuracy approached, or even exceeded the
classification accuracy of the original TM (30 m) data set. This significant improvement is
primarily due to the improved classification of water and soil.

As for radiometric errors, the goal was to improve (or at least not significantly
degrade) the difference associated between the blurred TM data set and the original TM data
set. A successful method would lower the 45.8 DC total error while sharpening the image.

The two methods that best recovered the original TM radiometry were the Price
techniques. For the DIRS techniques, unless they included the post-fixing operation, the
errors were higher than the blurred TM data set. The primary band that contributes these
errors is TM (or hybrid equivalent) band 4. Even in the blurred TM data set, the error in
reflectance units for TM4 are over 3 times greater than for the other reflective bands (see
Appendix C).

The primary reason for this high error in band 4 is its high standard deviation (or
high contrast) within the image. (Refer to section 3.1 on the selection of the imagery). For
this reason, plus the fact that TM4 is not highly correlated with the panchromatic image, it

is not surprising that the DIRS methods have high radiometric errors in band 4.
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4.4  Results for Part 2 -- Merging with Coarser Resolution Data Sets

with a Lower Registration Error

In this phase of the study, six of th.z methods were again tested at the blurred
resolutions, but the input SPOT image that was used had a registration error of less than 5
meters. The summary of these results are shown in Tables 4-8a through 4-8d below. For

further details on these results, please refer to Appendices D and E.

Table 4-8a
Summary of Classification Breakdown by Percentage (Re-registered 30m hybrid)

urban soil water  trees grass
Original TM (30m) 42.34 3.32 0.53 34.17 19.64
Blurred TM (90m) 66.48 130  0.49 8.23 23.49

DIRS Method

- Interpolated Input 47.37 1.20 0.66 2032 3045

- Interpolated and

post-fixed 49.65 1.98 0.67 11.96 35.74

DIRS Enhancement 1

- With post-fix 55.94 1.10 0.66 17.01  25.30
DIRS Enhancement 2

- modified for TM4,5  57.91 4.24 0.63 1236 24.37
Price Method

-LUT 41.94 5.11 0.79 30.06 22.10

- Adaptive Weights 46.32 2.98 0.87 17.79  32.06
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Table 4-8b
Summary of Classification Accuracy with
Independent Data Set 1 (Re-registered 30m hybrid)

urban soil water  trees grass  Overall ave

Original TM (30m) 92.5 100 62.3 61.9 99.1 83.2
Blurred TM (90m) 73.6 0 30.2 37.6 90.9 46.5
DIRS Method

- Interpolated Input 95.3 100 100 44.1 97.9 87.5

- Interpolated and

post-fixed 89.6 100 88.7 19.3 99.7 79.5

DIRS Enhancement 1

- With post-fix 97.2 88.5 100 43.6 95.8 85.0
DIRS Enhancement 2

- modified for TM4,5  83.0 95.1 77.4 45.0 939 78.9
Price Method

-LUT 56.6 96.7 92.5 75.2 97.3 83.7

- Adaptive Weights 80.2 98.4 88.7 28.2 95.2 78.1

urban + soil + water + trees + grass
5

where: overall ave =
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Table 4-8c
Summary of Classification Accuracy with
Random Data Set (Re-registered 30m hybrid)

urban soil water  trees grass  Overall ave

Original TM (30m) 76.0 35.0 100 68.0 92.0 74.2
Blurred TM (90m) 62.0 22.0 82.0 54.0 72.0 58.4
DIRS Method

- Interpolated Input 64.0 48.0 100 74.0 52.0 67.6

- Interpolated and

post-fixed 62.0 38.0 100 82.0 58.0 68.0

DIRS Enharncement 1

- With post-fix 62.0 34.0 92.0 66.0 70.0 64.8
DIRS Enkancement 2

- modified for TM4,5  64.0 10.0 96.0 86.0 60.0 63.2
Price Method

-LUT 72.0 14.0 88.0 70.0 76.0 64.0

- Adaptive Weights 66.0 35.0 76.0 83.0 58.0 63.6

urban + soil + water + trees + grass
5

where: overall ave =

Statistical Test 1: %2 = 4.795 (< 11.070) No significant differences among the
methods (a = 0.05)

Statistical Test 2:  Those methods with overall classification accuracies > 63.5%
are significantly better than 58.4%. (a = 0.05)




Table 4-8d
Summary Table for Selected 30 m Hybrid Sets
using a Re-registered SPOT image as input

Classification Classification
Accuracy using Accuracy using
Independent a Random Data Total RMS Error
Data Set 1 Set (DC)

Original TM (30m) 83.2% 74.2% reference
Blurred TM (90m) 46.5% 58.4% 45.8
DIRS Method

- Interpolated Input 87.5% 67.6% 48.8

- Interpolated then 79.5% 68.0% 41.1
post-fixed

DIRS Enhancement 1

- With post-fix 85.0% 64.8% 40.7

DIRS Enhancement 2

- modified for TM4, 78.9% 63.2% 41.8
™S

Price Method

- LUT for TM4, 5,7 83.7% 64.0% 38.4

- Adaptive weights 78.1% 63.6% 36.2
for TM4, 5,7

where:

Classification Accuracy = overallave = urban + soil + waster T lrees + grass
Total RMS Error = €041 * €yan2 ¥ €panas + €vands ¥ Evands * Evand?




4.4.1 Observations in Part 2 -- Merging with Coarser Resolution Data

Sets with a Lower Registration Error

The improved registraticn resulted in better radiometry for every method in every
band, except for the DIRS Enhancement 2 band 4. However in this case, the radiometric
error is only slightly higher.

For classification accuracy using independent data set 1, three methods slightly
improved, while the other three methods showed slightly poorer results. At this resolution.
it does not appear that registration differences between 1 pixel error and (.5 pixel error
have any significant effect on classification.

Using the classification accuracies derived from random data sets, we can now see
that no method was able to surpass the accuracy of the original TM data set. The primary
difference between independent data set 1 and a random data set are the results for soil.
The classifiers for all these hybrids basically overclassified on the soil. Thus the soil
sample chosen for the independent data set was always correctly classified (near 1009
accuracies); but with a random set, the overclassification was detected.

Although none of these methods were able to outperform the overall classification
accuracy (using a random data set) of the original TM data set, they all were able 1o
improve the classification accuracy of the blurred TM data set. In addition, several

methods were able to outperform the original TM data set in classifying trees and soil.
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4.5 Results for Part 3 -- Merging with Original Resolution Data Sets

This last phase used the original resolution data sets to create hybrid data sets with
approximately 10m GIFOV. The summary of these results are shown in Tables 4-9a

through 4-9e below. For the further details on these results, please refer to Appendix F.

Table 4-9a
Summary of Classification Breakdown by Percentage (10m hvbrid)

urban soil water  trees grass

Original TM (30m) 42.34 3.32 0.53 34.17  19.64

DIRS Method

- Interpoiated Input 51.08 1.50 0.56 23.83  23.03
- Interpolated and
post-fixed 48.86 1.86 0.55 2836  20.39

DIRS Enhancement 1

- With post-fix 49.74 1.24 0.59 27.86  20.59
DIRS Enhancement 2

- modified for TM4,5  47.76 2.28 0.54 2998 19.43
Price Method

-LUT 47.32 1.76 0.58 30.52 19.82

- Adaptive Weights 47.62 1.62 0.59 29.35  20.83
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Table 4-9b
Summary of Classification Accuracy with
Random Data Set (10m hybrid)

urban soil water  trees grass overall ave

Original TM (30m) 76.0 35.0 100 68.0 92.0 74.2
DIRS Method

- Interpolated Input 72.0 66.0 100 89.0 77.0 80.8

- Interpolated and

post-fixed 71.0 47.0 100 62.0 88.0 73.8

DIRS Enhancement 1

- With post-fix 74.0 66.0 100 8§2.0 §2.0 80.8
DIRS Enhancement 2

- modified for TM4,5  64.0 37.0 100 81.0 81.0 72.6
Price Method

-LUT 76.0 56.0 100 77.0 89.0 79.6

- Adaptive Weights 71.0 57.0 100 88.0 89.0 81.0

urban + soil + water + trees + grass
5

where: overall ave =

Statistical Test 1: x2 = 22.112 (> 11.070) The differences among the
classification accuracies are significant. The method- wre not

equal. (¢ = 0.05)

Statistical Test 2:  Those methods with overall classification accuracies > 76.5%
are significantly better than 74.2%. (a = 0.05). For
o = 0.01, the threshold for significrace is 80.4%
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Table 4-9¢
Summary of Classification Accuracy with
Independent Data Set 1 (10m hybrid)

urban soil water  trees grass overall ave

Original TM (30m) 925 100 62.3 61.9 99.1 83.2
DIRS Method

- Interpolated Input 98.1 100 100 81.2 99.4 95.7

- Interpolated and

post-fixed 97.2 100 62.3 77.7 99.1 87.3

DIRS Enhancement 1

- With post-fix 99.1 100 88.7 76.7 97.6 92.4
DIRS Enhancement 2

- modified for TM4,5  97.2 100 81.1 76.2 99.1 90.7
Price Method

-LUT 99.1 100 88.7 88.6 99.1 95.1

- Adaptive Weights 99.1 100 79.2 71.8 98.8% 89N

urban + soil + water + trees + grass
5

where: overall ave =

87




Table 4-9d
Summary of Classification Accuracy with
Independent Data Set 2 (10m hybrid)

urban soil water  trees grass overall ave

Original TM (30m) 50.0 100 60.0 70.0 78.0 71.6
DIRS Method

- Interpolated Input 82.0 100 74.0 94.0 92.0 88.4

- Interpolated and

post-fixed 76.0 98.0 62.0 78.0 88.0 &0.4

DIRS Enhancement 1

- With post-fix 86.0 100 72.0 80.0 76.0 g2.&
DIRS Enhancement 2

- modified for TM4, 5 76.0 96.0 £0.0 80.0 74.0 77.2
Price Method

-LUT 94.0 98.0 74.0 80.0 82.0 85.6

- Adaptive Weights 90.0 100 66.0 86.0 82.0 g4.8

urban + soil + water + trees + grass
S

where: overall ave =

Statistical Test 1: 2 = 14.194 (> 11.070) The differences among the
classification accuracies are significant. The methods are not

equal. (a = 0.05)

Statistical Test 2:  Those methods with overall classification accuracies > 78.0%
are significantly better than 71.6%. (¢ = 0.05). For
o = 0.01, the threshold for significance is 80.5%
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Table 4-9
Summary Table of Classification Accuracies for Selected 10 m Hybrid Sets
using a Re-registered SPOT image as input

Independent Independent
Random Data Set Data Set 1 Data Set 2
Original TM (30m) 74.2% 83.2% 71.6%
DIRS Method
- Interpolated Input 80.8% 95.7% 88.4%
- Interpolated then 73.8% 87.3% 8U.4%
post-fixed
DIRS Enhancement 1
- With post-fix 80.8% 92.4% 82.8%
DIRS Enhancement 2
- modified for TM4, 72.6% 90.7% 77.2%
T™S
Price Method
- LUT for TM4.,5,7 79.6% 95.1% 85.6%
- Adaptive weights 81.0% 89.8% 84.8%
forTM4,5,7
where:
Classification Accuracy = overall ave = urbar + soil + waster T frees ¥ gras
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4.5.1  Observations for Part 3 -- Merging with Original Resolution Data

Sets

Using independent data set 2, it becomes quite clear that the hybrid data classifies
better in the high frequency areas -- especially in the cases of urban and trees. The samples
for these two classes were taken from small side roads and from suburban areas. For the
other classes (water, soil, and grass) it was much more difficult to find isolated incidences.
and thus these samples were taken near boundaries and edges. With these samples the
original TM data set performed nearly as well.

Visually, the classification maps also confirm these results -- the roads have more

definition and the soil regions are more defined (see Appendix F).

4.6 Other Comparisons Between the Merging Methods

4.6.1 Visual Comparisons

All the methods visually improved the blurred images. However, under higher
magnification, the blocky appearance is readily apparent in some of the methods (see
figures 4-9 through 4-14).

The most blocky hybrid set was that of the DIRS Enhancement 2 method (with TM4
and TM5 modification). This result is not surprising since the algorithm was run with a
threshold that considered only 25% of the superpixel blocks as mixed. Thus at best. only

one-fourth of the blocks could be further segmented into subpixels without using the pure
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merging method. In addition, the algorithm's method of handling TM4 and TMS5 is to
insert the original TM values into the hybrid subpixels. This simple technique may not
decrease the blocking, and in some cases may accentuate the blocking efffect within these
bands.

Another noticed artifact was some high frequency noise in the hybrid bands created
by both Price techniques. For the Price technique that uses the look up table (LUT), the
high frequency noise is generated when the SPOT panchromatic transformation LUT has
no value associated with a SPOT DC. This can happen since the LUT is generated with an
averaged SPOT image and the TM band. In those cases, the value placed in the output
image is the closest lower value on the table.

In Figure 4-13 we can see this anomaly in a grove of trees. Band 5 is placed in the
red channel, and is sensitive to the vegetation so the grove is a deep red color The
panchromatic channel is only marginally sensitive to the vegetation and so its DC is much
lower. In those cases where there is no match for the panchromatic DC, the nearest (and
lower) value on the table corresponding to the DC is output. Thus these dark spots are

noticed in the grove of red trees.

The modified Price technique also produces high frequency noise in the output
images. In these instances, the multiband regression derives the (best fit) weights for a
superpixel area (section 2.6). These weights however, occasionally produce an outlier (an
extreme value) when applied to the individual subpixels within that superpixel. These
outliers appear as speckle, or high frequency noise in the image. To reduce the speckled
appcarance, a simple median filter was applied to these hybrid images. A median filter
maintains the edges of an image, but eliminates individual pixel noise. The resultant hvbrid

images after median filtering has no speckle, however, some fine structure (such as
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housetops) are also lost
Overall, the method which produces the most appealing visual hybrid is the DIRS

method with an interpolated TM data set as input.
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Figure 4-5. Comparison of Coarser Resolution Images
(2) Blurred TM Bands 5,3,2 (90m GIFOV)
(b) Hybrid Bands 5,3,2 produced by DIRS Method
with Interpolated Input (30m GIFOV)
(¢) Original TM Bands 5.2,2  (30m GIFOV)

93




Figure 4-6. Comparison of Original Resolution Tmages
(a) Original TM Bands 5,3,2 (30m GIFOV)
(b) Hybrid Bands 5,3.2 produced by DIRS Method
with Interpolated Input (10m GIFOV)
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Figurc 4-7. Replicated TM Bands 5,3,2
(30m GIFOV) (magnification = 4x)
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Figure 4-8. Interpolate TM Bands §,3,2
(30m GIFOV) (magnification = 4x)
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Figure 4-9. DIRS Method with Interpolated Input
(10m GIFOV) (magnification = 4x)

Figure 4-10. DIRS Method with Interpolated Input and Post-fixing
(10m GIFOV) (magnification = 4x)
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Figure 4-11. DIRS Enhancement 1 with post-fixing
(10m GIFOV) (magnification = 4x)
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Figure 4-12. DIRS Enhancement 2 Method with mod to TM4 and TM5

(10m GIFOV) (magnification = 4x)
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Figure 4-13. Price's Method (LUT)
(10m GIFOV) (magnification = 4x)

Figure 4-14. Maodified Price's Method with Adaptive Weights
(10m GIFOV) (magnification = 4x)
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4.6.2 Implementation Comparisons

Price’s methods require the most time-consuming preparation. His methods first
compute high resolution estimates of the TM bands, then merge these estimates to the
original resolution TM images. For those bands that are correlated to the panchromatic
image (TM bands 1, 2, and 3}, each band must derive the linear coefficients to transform
the panchromatic image into a high resolution estimate of the TM band.

While running the modified Price technique for the weakly correlated bands. the
coefficients to obtain the high resolution estimates are computed for each superpixel areu
(hence the term adaprive weighting). For each band, this results in close 1o 300.000
multivariate regressions. In addition, the modified Price technique must also run serially.
in that the high resolution estimate of TM7 must be computed first, since it is used as an
input to compute the estimates for TMS and TM4. All these coefficients are image

dependent and must be computed for every scene.

The DIRS methods require some preparation before merging, but thev dre not as
extensive as in the Price methods. First, a synthetic panchromatic image must be
computed. For this study, the weights used to compute this synthetic :mage are general
purpose weights that are not image dependent (section 2.2.1). Once the synthetic image
has been created, the SPOT panchromatic histogram is linearly adjusted to this svnthetic

image, and the merging operation can begin.

Except for the modified Price technique, the run times for these merging methads are

approximately equal. taking less than § minutes to run on a VAX 1170, Becuuse the
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modified Price technique is run serially and computes numerous regressions, obtaining a
full bybnd data set (bands 1-5,7) takes approximately 45 minutes. However, the code for
the modified Price technique, as well as the other methods, can be optimized for faster run

times.
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5.0 CONCLUSIONS

This study set out to determine if we could enhance our multispectral analysis by
merging a higher resolution panchromatic image to a lower resolution multispectral data set
while preserving the multispectral information. The results in section 4.0 clearly show that
merging can enhance analysis. Visual interpretablity, as well as computer interpretability
(measured via classification) is improved.

Several merging methods were compared. and each were found to have their own
advantages and disadvantages. No method was found to be overwhelmingly the best in all
phases of the evaluation. Listed below are the evaluation criteria and those techniques

which performed well.

(1) Best method to improve classification: DIRS method with interpolated
input. This method consistently provided the highest classification accuracy regardless of
the input classification set. Other methods which performed well are the Price techniques

and the DIRS Enhancement 1 with post-fixing.

(2) Best methods to maintain radiometry: Price and the modified Price with
adaptive weights. The modified Price method was the only method to improve the
radiometric error between the blurred TM4 image and the original TM4 image. The Price
method using the LUT also performed well with TM4. However for bands that are
strongly correlated, the DIRS methods perform slightly better. In all cases, if the
registration error between the panchromatic image and the TM data set 18 lower, so is the

radiometric error.
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(3) Best method to improve visual interpretation: DIRS with interpolated
input. Because this method does not force the radiometry to be correct over the superpixel
area, there is no blocking effect observed in the hybrid images. All other methods produce

images with some degree of blocking.

If the primary goal in merging panchromatic and multispectral images is improved
interpretablity, then the method to merge should be the DIRS method with interpolated
input. If preserving radiometry is equally important (as in situations where the hyvbrid data
set is used as a simulated product, or as input for further processing) then the modified
Price’s technique with adaptive weights, or the DIRS Enhancement 1 method with post-

fixing 1s recommended.

This study has developed and demonstrated several merging techniques which can
enhance image analysis. However, there are still some short-comings among these
techniques. Better methods to handle uncorrelated bands, as well as "smarter”
segmentation routines to reduce block appearances are two areas which require more
attention. These issues and recommendations for further studies are explored in the next

section.
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6.0 RECOMMENDATIONS

This section is broken down into two main parts. The first part explores some
possible changes and improvements to the merging methods that were evaluated in this
studv. The second part is a more generalized view of the direction that future merging

methods should consider.

6.1 Improvements to the Price Methods

The modified Price method with the adaptive weights for TM bands 4, 5, and 7
provided the best overall results among the methods evaluated. However, information was
lost when a median filter was applied over bands 4. 5 and 7 to eliminate the speckled
appearance. One improvement to this method would be to selectively (rather than
comprehensively) filter the image.

The selection criteria to filter the subpixel could be based on the standard deviation of

the input high resolution image(s). For example, this can be represented as:

‘ OT™
Threshold (k. 1) = Factor - Ghj.res inpu(kil) - ! (6-1)
ave hi_res mnput
where: G, . inpur(K:D) = the standard deviation of the high resolution image
at the area surrounding pixel location k.l
Oratii) = the standard deviation of the TM band 1 image:

= the standard deviation of the averaged high
resolution image (30m GIFOV'):

Gavc hi-res input

Factor = weighting factor;
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Threshold(k,l) = the threshold value for pixel location k.1

Thus, if the standard deviation of the 3 by 3 pixel block centered at k. 1 is greater

than Threshold(k,l), then that pixel location should be median filtered.

6.2 Improvements to the DIRS Methods

For certain applications. the DIRS methods show considerable promise. However,
when merging bands that are weakly correlated with the panchromatic image. the algorithm
falls short in maintaining radiometry. Therefore, as Price concluded, the correlated and the
weakly correlated bands must be handled differently if radiometry is to be preserved.

Further recommendations for each of these ceses are presented below.

6.2.1 Recommendations in Processing Correlated Bands

The first recommendation is in the generation and the use of the TM-based synthetic
panchromatic image. In this study. image independent weights were computed and used.
These weights were created by taking a best fit of 25 target samples over 3 different
atmospheres (section 2.2.1). Thus, these weights were intended to approximate a SPOT
panchromatic image for a general Landsat TM image set. However, for a more accurate
estimate of the panchromatic image. the weights can be calculated on an image to image
basis with a priori knowledge of the scene.

For example, in the scene used in this study, the original TM data set classified the
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five major classes in the following breakdown:

urban 42.34 %

soil 332 %
water 0.53 %
trees 34.17 %; and

grass 19.64 %.

Before any merging, the scene clearly has limited soil and water. So rather than
having each of the 25 targets weighted equally in the regression to compute the synthetic
panchromatic weights, the regression can weight the samples based on their percentage of
scene composition. In addition, if the atmospheric parameters are known, these too can be
used to generate more accurate samples for the regression. In this manner. an image
dependent weighting set can be developed to produce a more accurate panchromatic image.

With this synthetic panchromatic image, the atmospheric differences between the
acquisition of the SPOT and TM images can be removed. As suggested in section 4.1, the
blurred SPOT panchromatic image should be linearly adjusted to the synthetic panchromatic
image. These same coefficients are then applied to the original resolution SPOT

panchromatic image to transform the SPOT image into the TM aquisition domain.

After this transformation, the synthetic panchromatic image should be replaced in the
DIRS merging algorithm with the blurred or averaged SPOT image. Thus instead of the

DIRS merging algorithm of:
DCru(

DChlybrid Multiband{l) = DCspOT Pan - (DC
Syn TM Parn

the algonithm should appear as:
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DCrye(i) ) ,

DCHybrid Multiband() = DCspoT pan ( (6-3)
DCAave $POT Pan

In this manner, the radiometry is correct within the superpixel for all pure merges.
The synthetic panchromatic image is used only to atmospherically adjust the original SPOT

panchromatic image to the TM data set.

6.2.2 Recommendation for Handling Bands that are Weakly Correlated to

the Panchromatic Band

Perhaps one of the more exciting results of this study is how well the DIRS methods
can sharpen and recover the TM bands that are correlated to the finer resolution input
(panchromatic) band. Even the DIRS Enhancement 2 method returns a lower radiometric
error in bands 2 and 3 than the Price methods (Appendix C and E). These results suggest
that the high resolution input band that is used in merging with a TM multispectral band

should be correlatzd for a more accurate and radiometrically correct hybrid.

For those multispectral bands which are weakly correlated to the high resolution
panchromatic image, a recommendation is to replace the panchromatic input with a high
resolution estimate of the weakly correlated band in the merging algorithm. The primary
DIRS merging algorithm for these ba:ids would look identical to the Price method. Instead
of the DIRS merging algorithm shown in equation (6-2), the algorithm would be:

. . DC 1 .
DCHybrid Mulliband(l) = DCHi»rcs(l)““—l(l)‘_ (6-4)

\DCAvc Hi-res

106




where:  DCyy; (1) = Digital count (DC) of the high resolution estimate

of TM band ;

As in the modified Price technique (sectior 2.6), the high resolution estimate can be

computed using the Tom et al [85] technique.

The advantage of implementing this recommendation is that the DIRS methods are
not limited to this primary .nerging algorithm. With the maodifications and enhancements to
the DIRS method (section 2.2 through 2.4), the merging algorithm may replace the
superpixel ratio with a neighboring superpixel's ratio (see equation 2-10). By not being
limited to a "pure merge" at every superpixel, the DIRS methods should provide an

improvement to the Price methods.

6.2.3 Improvements to the Interpolated Input

The DIRS method using interpolated TM inputs created hybrid data sets that
significantly improved interpretability. For this reason, further work in the interpolation
routine can be explored.

For (his study, a simpie averaging kernal was used in the interpolation routine
(section 2.2.2). Other standard kernals may provide a more accurate, and realistic
interpolation. Two suggested kernals for future investigation are the Gaussian-weighted

kernal, and a cubic convolution kernal.
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6.2.4 Improvements to the DIRS Enhancement 2 Method

Although successful in only a limited sense, the concepts behind the DIRS
Enhancement 2 method warrant further investigation. This method is the only method
which does not employ a radiometric post-fix operation. Instead, the method works by
first determining the subpixel values that most likely belong to pure surrounding areas.
Those subpixels that are "left-over” are then assigned values such that radiometry is
preserved over the superpixel. Conceptually, this approach should alleviate the superpixel
blocking effect -- more so than a hard post-fix operation -- while maintaining radiometry.
However, the implementation of this algorithm was not robust. Further work needs to be

accomplished in many areas. Three suggestions are presented below.

The first recommendation is to run the DIRS Enhancement 2 method using
interpolated TM input (rather than replicated input). If the threshold is set such that 25% of
the superpixel areas are considered mixed, then a minimum of 75% of the image set will
appear as the DIRS method with interpolated input and post-fixing. The other 25% of the
image set will be sharpened with the enhanced segmentation routine. The resultant hybrid
images should more radiometrically precise than the DIRS method with interpolated input
and post-fixing; and should appear less blocky than the original DIRS Enhancement 2

method.

The second improvement would be modifying the thresholds used in decision-
making. Currently there 1s only one threshold value that is of prime interest to the

aigorithm. This is the user defined threshold that determines whether a superpixel 1s mixed
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or is pure. The second threshold determines if a subpixel is connected to a neighboring
subpixel (or superpixel), but its value is computed from the mixed threshold (section 3.4).
Further work should untie these two thresholds to allow more flexibility. Then the
algorithm should be excercised with varying threshold settings. Some preliminary work
was done in varying the thresholds, but the two thresholds were tied together and only

minor differences were noted.

The last suggestion for the improvement of the DIRS Enhancement 2 method is
much more involved. The algorithm needs to become "smarter”, and must use other
information to segment and sharpen the images. Currently, all the decisions are based on
the standard deviation threshold of the panchromatic (or high resolution) image.

Other information that could be used are edge information, or other textural and
statistical features. The additional information does not have to be limited to spatial
information. A classification map of the low resolution TM data set would be a useful

input, especially when dealing with weakly correlated bands.
In essense, this third suggestion is pointing to an artificial intelligence system, and is

by no means a trivial problem. However, this is the long-term and general direction that

data fusion algorithms will follow.
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6.3 General Considerations

This study investigated several methods that enhanced the spatial resolution of
multispectral data using a higher resolution panchromatic image. The study concentrated
on methods that operate in the spatial domain and work with simple linear relationships.

Other methods that work in other domains should also be studied. Work in the
spatial frequency domain seems to be a natural area for concentration, but care must still be
taken to separate the spatial and spectral information if maintaining radiometry is important.

Neural networks can provide an alternative to the simple linear relationships
prescribed by these methods. Neural networks are inherently non-linear in describing an
optimal relationship, and may be a method in handling bands that are weakly correlated to

the panchromatic image.

These methods that were evaluated are relatively simple, fast, and effective. There is
still some room for improvement, but the level of effort to attain further gain will be much
more extensive and complex. Future methods will have to incorporate and manipulate
more layers of information, including spectral, spatial, and statistical data, as well as
information on context. This influx of information may lead to a multi-stage

segmentation/classification scheme, or to a scheme that is iterative in nature.

Lastly, this study looked at only one image set and at one sensor pairing. The
methods are expected to be applicable to other sensor sets, as well as to hyperspectral data,
but further testing with varying image sets should be accomplished to ensure the robustness

of these techniques.
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Appendix A

Classification Results for Original TM Data (30 m)

Figure Al Classification Map for the Original TM Data Set.
Red represents urban: yellow - soil; blue - water:

dark green - trees: light green - grass.




Table Al. Using a Random Data Set (100 samples / class)

urban soil water trees £rass

urban 76.0% 0.0% 0.0% 18.0% 6.0%
soil 28.0% 35.0% 0.0% 10.0% 27.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%
rees 15.0% 0.0% 0.0% 68.0% 17.0%
grass 1.0% 0.0% 0.0% 7.0% 92.0%

overall classification accuracy: 74.2%
Table A2, Using Independent Data Set |

urban soil water trees griss

urban 92.5% 6.6% 0.0% 0.9% 0.0
soil 0.0% 100.0% 0.0% 0.0% 0.0,

water 0.0% 0.0% 62.3% 37.3% 0.0
trees 0.5% 0.0% 0.0 61.9% 37.6%

gruss 0.9% 0.0% 0.0% 0.0% 9. 1%

overall classification accuracy: 8§3.2%

Table A3. Using Independent Data Set 2 (50 samples/cliass

urban soil water trees arass

urban 50.0% 6.0% 0.0% 44.0% 0.0%

so1l 0.0% 100.0% 0.0% 0.0% 0.0%

water 18.0% 0.0% 60.0% 22.0% (1.0%

trees 24.0% 0.0% 0.0% 70.0% 6.0%

grass 16.07 6.0% 0.0% 0.0% 78.07
overall classification accuracy: 71.6%




Appendix B

Classification Results for Hybrid Data (30 m)
using Blurred TM Data (90 m)
and Blurred SPOT Data (30 m)

Figure B1. Classification Map for Blurred TM (90 m)
Red represents urban; yellow - soil: blue - water:
dark green - trees: light green - grass.
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Table Bla. Using Random (50 samples/class)

urban soil water trees grass

urban 62.0% 2.0% 4.0% 26.0% 6.0%
soil 22.0% 22.0% 0.0% 32.0% 24.0%

water 0.0% 0.0% 82.0% 0.0% 18.0%
rees 28.0 2.0% 0.0% 54.0% 16.0¢
grass 10.0% 0.0% 0.0% 18.0% 7207

overall classification accuracy: 58.4%

Table B1b. Using Independent Data Set 1

urban soil water trees [IRENN

urban 73.6% 0.0% 0.0% 5.7% RGN
soil 100.0% 0.0% 0.0% 0.0% 0.0

water 69.8% 0.0% 30.2% 0.0% 0.0%
rees 24.8% 0.0% 0.0% 37.6% 37.6%
grass 9.1% 0.0% 0.0% 0.0 90,9

overall classification accuracy: 46.5%
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Figure B2, Classification Map for the Orniginal DIRS Method (30 m hybrid).
Red represents urban; yellow - soil; blue - water:

dark green - trees; light green - grass.

Table B2 Contusion Matrix for the original DIRS Method (3¢ m hybrid)
using Independent Data Sct 1

urban soll water trees arass

urban 63.2% 34.0% 0.0% 0.9% 1.9%
soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 88.7% 0.0% 11.3%
trees 15.3% 0.0% 0.3% 14.9% 60.8%
griass 5.5% 0.3% 0.0% 0.0% 94.2%

overall classification accuracy: 72.2%




Figure B3.

dark green - trees: light green - grass.

Table B3, Confusion Matrix for DIRS Method with

Classification Map for the DIRS
New Weighting for Synthetic Pan Image(30 m hybrid).
Red represents urban: yellow - soil; blue - water:

New Weighting for Synthetic Pan Image (30 m hybrid)
using Independent Data Set 1

urban soil water trees arass

urban 96.2% 1.9% 0.0% 0.0% 1.9%

soil 3.3% 96.7% 0.0% 0.0% 0.0%

water 0.0% 0.0% 100.0% 0.0% 0.0%

trees 2.0% 0.0% 0.0% 27.2% 70.8%

2rass 6.4% 0.0% 0.0% 0.0% 93.67%
overall classification accuracy: 82.7%




Figure B4. Classification Map for the DIRS Method
with Interpolated Input (30 m hybrid)
Red represents urban; yeilow - soil; blue - water:

dark green - trees: light green - grass.

Table B4, Confusion Matrix for the DIRS Method
with Interpolated Input (30 m hybrid)
using Independent Data Set |

urban soil water rees grass

urban 95.2% 7.5% 0.0% 0.0% 0.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%
water 0.0% 0.0% 100.0% 0.0% 0.0%%
trees 35% 3.5% 0.0% 51.0% 42.1%
2rass 0.9% 0.0% 0.0% 0.0% 99.1%

overall classification accuracy: 88.5%
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Figure BS.

Table BS.

nd Post-fixing (30m hvbri

Interpolated Input and Post-fixing (30 m

5

Classification Map for the DIRS Method with

hybrid)

Red represents urban: yellow - soil; blue - water:

dark green - trees; light green - grass

Confuston Matrix for the DIRS Method with

Interpolated Input and Post-fixing (30 m hvbrid)

using Independent Data Set |

urban soil water trees ariss

urban 96.2% (2.9% 0.0% (.9% 1.9%
soil 0.077 100.0% 0.0 0.0% 0.0%
water 0.077 0.0 8&.7% 0.07% 11.3%
rrees 4.0 0.0% (0.0%% 22.3% 73.8%
grass (.3 0.0% 0.0% 0.0 99 7%

overall classitication accuracy: §1.4%%
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Classification Results for the DIRS Enhancement 1 Method

Figure B6.
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Classification Map for DIRS Enhancement 1 (30 m hybrid)

Red represents urban; yellow - soil; blue - water;
dark green - trees; light green - grass.

Table B6.  Confusion Matrix for DIRS Enhancement 1 (30 m hybrid)
using Independent Data Set 1
urban soil water trees grass
urban 76.4% 0.0% 0.0% 1.9% 21.7%
soil 14 8% 85.2% 0.0% 0.0% 0.0%
water 1.9% 0.0% 90.6% 0.0% 7.5%
trees 1.5% 0.0% 0.0% 9.9% 88.6%
£rass 2.1% 0.0% 0.0% 0.0% 97.9%
overall classification accuracy: 72.0%




“lassification Results for the DIRS Enhancement I Method
with Post-fixing (30m hybrid)
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Figure B7. Confusion Matrix for DIRS Enhancement 1
with Post-fixing (30 m hybrid)
Red represents urban; yellow - soil; blue - water:
dark green - trees; light green - grass.

Table B7. Confusion Matrix for DIRS Enhancement |
with Post-fixing (30 m hybrid)
using [ndependent Data Set 1

urban soil water trees £rass

urban 96.2% 0.0% 0.0% 0.0% 3.8
soil 6.6% 93.4% 0.0% 0.0% 0.0

water 1.9% 0.0% 98.1% 0.0% 0.0%
trees 0.5% 0.0% 0.0% 19.3% RO.2%

grass 0.3% 0.0% 0.0% 0.0% 99.7%

overall classification accuracy: 81.3%
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> ification Results for the DIRS Enhancement 2 Meth

30m hvbrid

Figure BY. Classification Map for DIRS Enhancement 2 (30 m hybrid)
Red represents urban; yellow - soil; blue - water;

dark green - trees; light green - grass.

Table B8, Confusion Matrix for DIRS Enhancement 2 (30 m hybrid)

using Independent Doty Set |

urban soil water trees grass

urban 98.1% 0.0% 0.0% 0.0% 1.9%
soil 4.9% 95.1% 0.0% 0.0% 0.0%
water 11.3% 0.0% 77.3% 0.0% 11.3%
trees 8.9% 0.0% 0.0% 29.7% 61.4%
grass 6.4% 0.0% 0.0% 0.0% 93.6%

overall classification accuracy: 78.8%




Figure B9. Classification Map for DIRS Enhancement 2
with adjustment for TM4 and TMS (30 m hybrid)

Red represents urban; yellow - soil: blue - water:

dark green - trees: light green - grass.

Table BY.  Confusion Matrix for DIRS Enhancement 2
with adjustment for TM4 and TMS (30 m hybridy

using Independent Data Set |

urban soil witer trees arass
urban 90.6% 6.6% 0.0% 0.9% 1.9%
soil 3.3% 96.7% 0.0% 0.0% 0.07%
water 11.3% 0.0% K8.7% 0.0% 0.0
trees 0.5% 0.0% 0.0% 39.6% 39.9%
NN (1.6% 0.0% 0.0% 0.0% 99 .47

overall classification accuracy: 83.0%

B 10




Figure B10. Classification Map for Prices Method
Red represents urban: vellow - soil; bluc - water;

dark green - trees: light green - grass.

Table B10.  Confusion Matrix for Prices Method using
Independent Data Set |

urban soil water rees STiss

urban T17% 19.8% 0.0% 0.0% 8.8
soil 3.3% 96.7% 0.0% 0.0% 0.0%¢

water 0.0% 0.0% 98.1% 0.0% 1.9%
trees 1.5% 0.5% 0.07% 48.0% 47.0%
AN 0.0% 0.9% 0.0% 0.0% 99 1%

overall classitication accuracy: 82.77%




Figure B11. Classification Map for Prices Mcthod
with adaptive weights modification

Red represents urban: vellow - soil: blue - water:

dark green - trees: light green - grass.

Table B11 -- Confusion Matrix for Prices Method

with adaptive weights modification

using Independent Data Set

urban soil water trees Lriss
urban 76,4 23.6% 0.0% 0.0% 0.0
soil 6.6% PRIS I 0.0% 0.0 0.07%
woter LR 0.0 A 0.0% (O
trees 1.5% 0.5% 14.9% 2927 S1.09
Ariss 0.0 0.9 0.07% (.0< 99 1

overall classitication accuracy: 7744




Appendix C
Radiometric Results for the Hybrid Data (30m )

using Blurred TM Data (90m) and
Blurred SPOT Data (30m)

Table C1. Error Table for blurred TM (90 m)

error (DC) error (reflectance)
TM™ M1 7.78% 1.09
™2 4.31 1.63
T™M3 7.08 1.5%
TAMA 11.71 5.12
TMS 8.97 -
™7 5.95 -

Table C2. Error Tuble for original DIRS Method (30 m hybrid)

error (DC) error (retlectance)
TMI Estimate 7.81 1.09
TM2 Estimate 3.56 1.34
TM3 Estimate 5.39 1.21
TM4 Estimate 16.21 7.09
TMS Estimate 9.73 -
TM7 Estimate 5.10




Table C3.

Error Table for DIRS Method using the new

welghting for the Synthetic Pan Image

error (DC) error (reflectance)
TM1 Estumate 9.02 1.26
TM2 Estimate 3.78 1.43
TM23 Estimate 5.42 1.21
TM4 Estimate 17.40 7.62
TMS Estimate 10.45 -
TM7 Estimate 5.16 -

Table C4.

Error Table for the DIRS Method
with Interpolated Input (30 m hybrid)

error (DC) error (reflectance)
TMI Estimate 8.84 1.23
TM2 Estimate RE 1.46
TM3 Estumate 5.53 1.24
TM4 Estimate 16.93 7.41
TMS Estimate 10.37 -
TM7 Esumate 5.28

Table CS. Error Table for the DIRS Method with
Interpolated Input and Post-fixing (30 m hybrid)
error (DC) error (reflectance)

TM1 Estimate 7.21 1.01
TM2 Estimate 298 1.12
TM3 Estimate 4.39 0.9%
TM4 Estimate 15.41 6.75
TMS Estimate 8.79

TM7 Esumate 4.31]




Table C6. Error Table for DIRS Enhancement 1 (30 m hybrid)

error (DC) error (reflectance)
TMI Estimate 8.29 1.16
TM2 Estimate 3.58 1.35
TM3 Estimate 5.36 1.20
TM4 Estimate 16.80 7.35
TMS Estimate 10.46 -
TM7 Estimate 5.25 -

Table C7. Error Table for DIRS Enhancement |
with Post-“.xing (30 m hybnd)

error (DC) error (retlectance)
TM1 Estimate 6.82 0.953
TM2 Estimate 2.89 1.09
T™M3 Esumate 4.44 0.99
TM4 Estimate 15.09 6.60
TM3 Estimate 9.04 -
TM?7 Estimate 5.19

Table CK.  Error Table for DIRS Enhancement 2 (30 my hvbrid)

error (DC) error (reflectance)
TM1 Estimate 6.98 0.97
TM2 Estumate 294 1.11
TM3 Estimate 4.67 1.04
TM4 Estumate 16.31 7.14
TMS Estmate 9.11
TM7 Estimate 4.64




Table C9. Error Table for DIRS Enhancement 2

with adjustment for TM4 and TMS (30 m hybrid)

error (DC) error (reflectance)
TMI1 Estimate 6.98 0.97
TM2 Estimate 293 1.11
TM3 Estimate 4.67 1.04
TM4 Estimate 15.07 6.60
TMS Estimate 9.32 -
TM7 Estimate 4.64 -

Table C10. Error Table for Price Method (30 m hybrid)

error (DC) error (reflectance)

TMI Estimate 5.82 0.81
TM2 Estimate 31 1.18
TM3 Estimate 6.00 1.34
TM4 Estimate 12.64 5.53
TMS Estmate 8.61 -

TM7 Estimate 6.88 -

Table C11. Error Table for Price Method with

Adaptive Weights Modification (3C m hybrid)

error (DC) error (reflectance)
TMI1 Estimate 5.82 0.81
TM2 Estimate 311 1.18
TM3 Estimate 6.00 1.34
TM4 Estimate 11.11 4.86
TMS Estimate 7.80
TM7 Estimate 4.59




Appendix D

Classification Results for Hybrid Data (30 m)
using Blurred TM Data (90 m)
and Re-registered Blurred SPOT Data (30 m)

Figure D1 Classification Map for the DIRS Method with Interpolated Input
Red represents urban: vellow -- soil: blue -- water:

dark green -- trees: light green -~ grass.




Table Dla.  Confusion Matrix using Independent Data Set |
for the DIRS Method with Interpolated Input and

Re-registered SPOT

image

urban soil water trees grass

urban 95.3% 0.0% 0.0% 2.8% 1.9%
soil 0.0% 100.0% 0.0% 0.0% 0.0%
water 0.0% 0.0% 100.0% 0.0% 0.0%
rees 3.5% 2.5% 0.0% 44.1% S50.0¢
Srass 2.1% 0.0% 0.0% 0.0% 97.9%

overall classification accuracy: 87.5%

Table DIb.  Confusion Matrix using a Random Data Set
for the DIRS Method with Interpolated Input and

Re-registered SPOT image (50 samples/class)

urban soil water trees grass
urban 64 0% 2.0% 0.0% 22.0% 12.0%
soil 10.0% 48.0% 0.0% 16.0% 26.07
water 0.0% 0.0% 100.0% 0.0% 0.0%
trees 18.0% 0.0% 0.0% 74.0% 8.0%
£rass 2.0% 0.0% 0.0% 46.0% 52.0%
overall classification accuracy: 67.6%




Classification Results for the DIRS Method with Interpolated Input,

Table D2a.

e

Confusion Matrix using Independent Data Set |

urbun soil water trees Srass
urban RO 4.7% 0.0 0.9 4.7"%
sol 0.0 100.0% 0.07% 0.0 0.0
water 0.0 0.07 KR.7% 0.0 L1.3¢
trees 1.0 0.0 0.0% 19,39 7607
ariass (1.3 0.0 0.00% 0.0 YO 74

Table 2h.

overall classification accuracy: 79.5%

Contusion Matix using a Random Datia Set (30 samples/oliss)

urban soil waler trees Qrass

urbuan 62009 0.00¢ 2.0 32.0% 4,07

soil 2100 8.0 0.0 14.07¢ 2049

water 0.0, 0.0 100.0% 0.0 0.0

trees 1o (0.0, 0.0 N2 0 Lo

LU 200 0.0 0.0 40.09 SN0
averall classificaton accuracy: 6807




Classification Results for the DIRS Enhancement 1 Method
with Post-fixing and a Re-registered SPOT image

cewrliey . o8 ¢ gale s
CINERL Y G P g e
e AR ) . .

urban soil water ees arass
urban 97.2% 0.0% 0.0% 0.0% 2R8%
soil 11.5% RR.S% 0.0% 0.0% 0.0%
water 0.0% 0.0% 100.0% 0.0% 0.0%
trees 15.8% 0.0% 0.0% 43.6% 10.6%
grass 1.2% 0.0% 0.0% 0.0% 95.8%

overall classification accuracy: 85.0%

Table D3b.  Confusion Matrix using a Random Data Set (50 samples/class)

urban soil water trees ariass

urban 62.0% 0.0% 2.0% 32.0% 1.0
soil 3R.0% 31.0% 2.0% 6.0% 2007

water 0.0% (.0% 92.0% 8.0 0.07%
rees | 220%  0.0% 0.0%  660% 1200

garass 1.0% 0.0% 0.07% 26.07 70.0¢

overall classification accuracy: 64.8%

D4




Classification Results for the DIRS Enhancement 2 Method
with TMd4, TMS3 Modification and Re-registered SPOT image
ST R P IT,

Table D4a.  Confusion Matrix using Independent Data Set |
urban soil water rees grass
urban 83.0% 15.1% 0.0% 0.0% 1.9%
soil 4.9% 95.1% 0.0% 0.0% 0.0%
water 22.6% 0.0% 77.4% 0.0% 0.0%
trees ().5% 0.0% 4.5% 45.07% S0.0%
arass 6.1 0.0% 0.0% 0.0% 93.9%

overall classitication accuracy: 78.9%

Table Db,

Confusion Matrix using a Random Data Set (50 samples/class)

urban soll water rees grass

urban 6104 0.0% 0.0% 34.0% 2.0%

soil 68.0%% 10.0%% 0.0% 8.0% 14.0%

waler 0.0 0.0% 96.0% 0.0% 4.07%

trees 0.0% 0.0% 0.0% R6.0% N.0%

griass 0.0 0.0% 0.0% 40.0% 6007
overall classitication accuracy: 63.2%




Classification Results for the Price Method and a Re-registered SPOT

& Ste= I R

—

Table DSa.  Confusion Matrix using Independent Data Set 1

urhan soil water trees arass

urban 56.6% 42.5% 0.0% 0.9% 0.0%
soil 3.3% 96.7% 0.0% 0.0% 0.0%

water 0.0 0.0% 92.5% 0.0% 7.5%
ees 0.3 4.5% 0.0% 75.2% 19.8%
arass 0.0 0.9% 0.0% 1.8% 97.3%

overall classitication accuracy: 83.7%

Table DSk Contuston Matrix using a Random Data Set (50 samples/elass)

urban soil water trees arass
urban 72.0"% 0.0% 0.0% 26.0% 2.0%
501} AN.04 11.04 0.0% 2.0 A6.0%
walter (.07 0.0 8R.0% 10.0% 2.0%
trees 14.0% 0.07% 0.0% 70.0¢% 16.07%
grass 6.0 (0.0% 0.0% 18.0¢% 76.00

overall classification accuracy: 634,07

D-o6




Classification Results for the Price Method
with the Adaptive Weights Modification and a Re-registered SPOT image
ody - T TR

Table D6a.

<P

TN fomrl Xaeal g & g
S \ﬁﬁ"“l -4 4 t}ﬂ-}‘h

Nl

=® 9

Confusion Matrix using Independent Duata Sct |

Table D6b.

Confusion Matrix using 4 Random Data Set (100 samples/class)

urban soil water rees Qrass

urbun 80.2¢ 17.9% 0.C% 0.0 1.97%

soil 1.6% 98.4¢% 0.0% 0.0 (0.0

water 11.3% 0.0% 8&.7% 0.0% 0.0%

trees 5.0% 0.0% 3.5% 28.24% 63.4%

grass 2.74% 2.1% 0.0% 0.0 95.2%
overall classification accuracy: 78.1%

urban soil water rees griss

urban 66.00% 1.0% 0.0% 28.07% 5.0%

soil 10.0% 35.0% 0.07% 6.07% 13.07%

water 0.0 0.0 76.0% 16.07% N0

trees 1407 0.077 0.0% R3.0% 3.0

griss 3.0 0.07% 1.0 N0 N7
overall classification accuracy: 03.6%




Appendix E

Radiometric Results for Hybrid Data (30 m)
using Blurred TM Data (90 m)
and Blurred, Re-registered SPOT Data (30 m)

Table E1 -- Error Table for the DIRS Method with Interpolated Input
and Re-registered SPOT image

error (DC) error (reflectance)
TM1 Estimate 8.26 1.15
TM2 Estimate 3.65 1.3%
TM3 Estimate 5.24 1.17
TM43 Estimate 16.73 7.32
TMS Estimate 9.93
TM7 Estumate 4.98 -

Table E2 -- Error Table for the DIRS Method with Interpolated Input.
Post-fixing, and a Re-registered SPOT mmuage

error (DC) error (reflectance)
TMI1 Estimate 6.51 0.91
TM2 Estimate 270 1.02
TM23 Estimate 4.09 0.92
TM4 Estimate 15.37 6.73
TMS Estimate 8.37
TM7 Estimate 4.02




Table E3 -- Error Table for the DIRS Enhancement 1 Method with Post-fixing
and a Re-registered SPOT image

error (DC) error (reflectance)
TM1 Estimate 6.14 0.86
TM2 Estimate 2.61 0.98
TM3 Estimate 4.11 0.92
TM4 Estimate 14.92 6.53
TMS Estimate 8.71 -
TM7 Esumate 4.20 -

Table E4 -- Error Table for the DIRS Enhancement 2 Method
with TM4, TMS Modification
and Re-registered SPOT 1image

error (DC) error (reflectance)
TMI Esumate 6.26 0.87
TM2 Estimate 2.62 0.99
TM3 Estimate 4.29 0.96
TM4 Estimate 15.13 6.63
TMS Esumate 9.14 -
TM™M7 Esumate 4.31




Table ES -- Error Table for the Price Method and a Re-registered SPOT imuge

error (DC) error (reflectance)
TMI1 Estimate 5.22 0.73
TM2 Estimate 2.78 1.05
TM3 Estimate 4.95 1.11
TM4 Estimate 12.24 5.36
TMS Estamate 8.22 -
TM7 Esumate 5.04

Table E6 -- Error Table for the Pnice Method with the adaptive weights moditication
and a Re-registered SPOT image

error (DC) error (reflectance)
TM1 Estimate 5.22 0.73
TM2 Estimate 2.78 1.05
TM3 Estimate 495 ST
TM4 Esumate 10.97 4.80
TMS Estimate 7.83 -
TM7 Estumate 4.43 -




Appendix F

Classification Results for Hybrid Data (10 m)
using TM Data (30 m)
and Re-registered SPOT Data (10 m)

Figure F1o Classification Map for the DIRS Method with Interpolated Input
Red represents urban: yellow -- soil: blue - water:

dark green - trees: light green -- grass,

Table Fla Confusion Matrix using a Random Set (100 samples/class)

urban soil water trees griss

urban 72.0% 0.0% 0.0% 23.0% 5.0

soil 26.07% 66.0% 0.0% 2.0% 6.0

water 0.0 0.0 100.0% 0.0 0.0

trees 6.07¢ 0.07% 0.0% RO 5.09
grass .00 0.0 0.0 22.0% 7T !

overall classification accuracy: 80.8¢




Table F1b.  Confusion Matrix using Independent Data Set |

for the DIRS Method with Interpolated Input and

Re-registered SPOT image

urban soil water trees grass

urban 98.1% 0.9% 0.0% 0.9% 0.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%
water 0.0% 0.0% 100.0% 0.0% 0.0%
rees 0.0% 0.0% 0.0% 81.2% 18.8%
£rass 0.6% 0.0% 0.0% 0.0% 99.4¢

overall classification accuracy: 95.7%

Table Flc.  Confusion Matrix using Independent Data Set 2
for the DIRS Method with Interpolated Input and
Re-registered SPOT image (50 samples/class)

urban soil water trees grass

urban 82.0% 4.0% 0.0% 12.0% 2.0%

soil 0.0% 100.0% 0.0% 0.0% 0.0%

water | 24.0% 0.0% 74.0% 2.0% 0.0%

trees 6.0% 0.0% 0.0% 94.0% 0.0%

grass 8.0% 0.0% 0.0% 0.0% 92.0%
overall classification accuracy: &8.4%




Classification Results for the DIRS Method with Interpolated Input,
Post-fixing, and a Re-registered SPOT image
L e s 22, ,.I:,v't. ae . ". (3,’5?‘{:;{4; i X

- el
Figure FFI.  Classification Map for the DIRS Method with Interpolated Input.
Post-fixing, and a Re-registered SPOT image

Red represents urban: vellow -- soil; blue -- water:

dark green -- trees: light green -- grass.

Table F2a. Confusion Matrix using a Random Sct (100 samples/class)

urhan soil water trees griss

urban 71.07% 0.0% 2.0% 20.0% 7.0%

sotl 33.0% 17.0% 0.0% 8.0% 12.07%

water (.07 (0.0 100.0% 0.0% 0.0

trees 15.07% 0.0% 1.0% 62.0% 22.00

griass 1.07% (.07 (0.0% 11.0% 8807
overall classification accuracy: 73.6%




Table F2b.  Confusion Matrix using Independent Data Set |
for the DIRS Method with Interpolated Input,
Post-fixing, and a Re-registered SPOT image

urban soil water trees grass

urban 97 2% 1.9% 0.0% 0.9% 0.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%
water 0.0% 0.0% 62.3% 37.7% 0.0%
trees 0.0% 0.0% 0.0% 77.7% 22.3¢,
grass 0.9% 0.0% 0.0% 0.0% 99.17¢

overall classification accuracy: 87.3%

Table F2¢.  Confusion Matrix using Independent Data Set 2 (50 samples/clusa
for the DIRS Method with Interpolated Input.
Post-fixing, and a Re-registered SPOT imuge

urbun soil water rees griss

urban 76.0% 6.0% 0.0% 18.0% 0.0%
soil 2.0% 98.0% 0.0% 0.0% 0.0%

water 32.0% 0.0% 62.0% 6.0% 0.0%
trees 20.0% 0.0% 0.0% 78.0% 2.0%
grass 12.0% 0.0% 0.0% 0.0% &8.07%

overall classification accuracy: 80.4%




Classification Results for the DIRS Enhancement 1 Method
with Post-fixing and a Re-registered SPOT image

Figure F3. Classitication Map for the DIRS Enhancement T Method
with Post-fixing and a Re-registered SPO T image

Table F3a. Confusion Matrix using a Random Data Set (100 samples/class)
for the DIRS Enhancement 1 Method with Post-fixing
and a Re-registered SPOT image

urban soil waler trees Uriass

urban 7.0 0.0 0.0% 18.07% N.0%
s0il 2907 66.0% 0.0 2.0% .09

waler 0.0 (0% 100 0% 0.07% (.07
trees 8.0 0.0% 0.0% 82.07% 10,07

griass 1.0 1.0% 0.07% 16.0¢ 209

overall classificanon accuracy: 80N




Table F3b.  Confusion Matrix using Independent Data Set 1

for the DIRS Enhancement 1 Method with Post-fixing
and a Re-registered SPOT image

urban soil water trees grass

urban 99.1% 0.0% 0.0% 0.9% 0.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 0.0% 0.0% 88.7% 11.3% 0.0%
rees 0.0% 0.0% 0.0% 76.7% 23.3%

grass 244 0.0% 0.0% 0.0% 97 0%

overall classification accuracy: 92.4%

Table Fic.  Confusion Matrix using Independent Data Set 2

for the DIRS Enhancement 1 Method with Post-fixing
and a Re-registered SPOT image

urban soil water rees gruss

urban 86.0% 2.0% 0.0% 10.0% 2.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 20.0% 0.0% 72.0% 8.0% 0.0
trees 18.0% 0.0% 0.0% 80.0% 2.0¢

£rass 24.0% 0.0% 0.0% 0.0% 76.0%

overall classification accuracy: 82.8%




Classification Results for the DIRS Enhancement 2 Method
with TM4, TMS Modification and Re-registered SPOT image

Figure 4. Classitication Map for the DIRS Enhancement 2 Method
with TN TMS Moditication and Re-registered SPOT image

Table Fda. Contusion Matrix using a Random Data Set (100 samples/cliss
for the DIRS Enhancement 2 Method  with TN Moditication

and Re-registered SPOT nmage

urhan soil wilter rees Criss
urbuan 6100 0.0 0.0% 2800 807
ol 4700 3704 1.0% 3.0% [2.07%
wier 0.0 0.0 100.0% 0.07% 0.07
rees IR (.0 0.0 N1.O% N0
SR A 0.0 0.0 17.0% N0

overall classitication aceuracy: 72.6%




Table F4b.  Confusion Matrix using Independent Data Set 1
for the DIRS Enhancement 2 Method with TM4, TMS Modification
and Re-registered SPOT image

urban soil water rees grass

urban 97.2% 1.9% 0.0% 0.9% 0.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%

water 1.9% 0.0% 81.1% 17.0% 0.0%
trecs 0.0% 0.0% 0.0% 76.2% 23.8%

grass 0.9% 0.0% 0.0% 0.0% 99.1%

overall classification accuracy: 90.7%

Table F4c.  Confusion Matrix using Independent Data Set 2
for the DIRS Enhancement 2 Method with TM4, TMS Modification
and Re-registered SPOT image

urban soil water wees grass

urban 76.0% 6.0% 0.0% 18.0% 0.0%
soil 4.0% 96.0% 0.0% 0.0% 0.0%%
water 32.0% 0.0% 60.0% 6.0% 2.0%
trees 18.0% 0.0% 0.0% 80.0% 2.0%
grass 22.0% 2.0% 0.0% 2.0% 74.0%

overall classification accuracy: 77.2%




Classification Results for the Price Method and a Re-registered SPO'T

image

Froure IS0 Classification Results for the Price Method and a Re-registered SPOT imaee

Table 3o Confuston Mares using a Random Data Set 100 samples/elass)
for the Poce Method and a Re registered SPOT nage

mh.n;_ a sond witer rees gr;\\\apﬂ
arban | 700 30 L0 160 o
sol RICRO I SOV 0.0 1.0 [
SIS 0.0 (.0 1000 (.0, 0.0y
rees Y0 0.0 0.0 770 200
AR RN b O 0.0 0.0 [0 8O0
overalb clissification accuracy: 7964




Table F5b.  Confusion Matrix using Independent Data Set |
for the Price Method and a Re-registered SPOT image

urban soil water trees grass
urban 99.1% 0.0% 0.0% 0.9% 0.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%
water 9.4% 0.0% 88.7% 1.9% 0.0%
trees 0.0% 0.0% 0.0% 88.6% 11.4%
arass 0.9% 0.0% 0.0% 0.0% 99.1%
overall classification accuracy: 95.1%
Table F5¢.  Confusion Mawix using Independent Data Set 2
for the Price Method and a Re-registered SPOT image
urban soil water ees grass
urban 94.0% 2.0% 0.0% 4.0% 0.0%
soil 2.0% 98.0% 0.0% 0.0% 0.0%
water 26.0% 0.0% 74.0% 0.0% 0.0%
trees 14.0% 0.0% 0.0% 80.0% 6.0%
grass 16.0% 2.0% 0.0% 0.0% §2.0%
overall classification accuracy: 85.6%
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Classification Results for the Price Method
with the Adaptive Weights Modification and a Re-registered SPOT image

Figure F6.  Classification Results for the Price Method with the
Adaptive Weights Modification and a Re-registered SPOT image

Table Foa. Confusion Matrix using a Random Data Set (100 samples/class)
tor the Price Method with the Adaptive Weights Modification
and a Re-registered SPOT mmage

urban soil water trees QIUss
urban 71.0¢% 0.0% 0.0% 21.0% 805
soil 25.07% 57.0% 0.0 1.0 17.0%
witler 0.0 0.0 100.0% 0.07% 0.07%
trees 1.0 0.0% 1.0 8807 7.0
griss 2.0 1.0 0.0% 8.0 8907

overall classificaton accuracy: 81.0%




Table F6b.  Confusion Matrix using Independent Data Set |
for the Price Method with the Adaptive Weights Modification
and a Re-registered SPOT image

urban soil water trees grass

urban 99.1% 0.0% 0.0% 0.9% 0.0%
soil 0.0% 100.0% 0.0% 0.0% 0.0%
water 0.0% 0.0% 79.2% 20.8% 0.0%
rees 0.0% 0.0% 0.0% 71.8% 2824
grass 0.3% (0.9% 0.0% 0.0% 98.8%

overall classification accuracy: 89.8%

Table oo, Confusion Matrix using Independent Data Set 2
for the Price Method with the Adaptive Weights Moditication
and a Re-registered SPOT image

urban soil water rees grass

urban 90.0% 2.0% 0.0% 8.0% 0.0%
sol] 0.0% 100.0% 0.0% 0.0% 0.0

water 30.0% 0.0% 66.0% 4.0% 0.0
trees 10.0% 0.0% 0.0% 86.0% 4.0

grass 16.0% 2.0% 0.0% 0.0% 82.0%

overall classification accuracy: 834.8%




Appendix G

Statistical Tests

I Determining if the Overall Classification Accuracies from Various Methods

are Significantly Different

I1. Determining the Threshold Value above which Classification Accuracies are
Considered to be Significantly Different than the Input TM Ciassification

Accuracy

G-1




I. Determining if the Overall Classification Accuracies from Various

Methods are Significantly Different

This statistical test 1s a check whether the overall classification accuracies from each
of the methods are significantly different from one another. It uses an r x ¢ table analysis
as presented by Freund [88]. An example is presented for the data in Table 4-8¢

reproduced below:

Table 4-&c
Summary of Classification Accuracy with
Random Data Set (Re-registered 30m hvbrid)

urban soll water  rees grass  Overall ave

Original TM (30m) 76.0 350 100 68.0 92.0 74.2
Blurred TM (90m) 62.0 22.0 82.0 54.0 72.0 S84
DIRS Method

- Interpolated Input 64.0 48.0 100 74.0 52.0 67.0

- Interpolated and

post-fixed 62.0 38.0 100 82.0 58.0 6%.0

DIRS Enhancement 1

- With post-fix 62.0 34.0 92.0 66.0 70.0 64.8
DIRS Enhancement 2

- modified for TM4,5  64.0 10.0 96.0 86.0 60.0 63.2
Price Method

-LUT 72.0 14.0 88.0 70.0 76.0 64.0

- Adaptive Weights 66.0 35.0 76.0 §3.0 55.0 63.0
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The steps are as follows:
(A) Reformat the overall classification data into an r x ¢ table format:
Let Method 1 = DIRS Method with Interpolated Input:

Method 2 = DIRS Method with Interpolated Input and Post-fixing:
Method 3 = DIRS Enhancement 1 with Post-fixing;
Method 4 = DIRS Enhancement 2 with TM4 TMS modification;
Method S = Price Method with LUT:
Method 6 = Price Method with Adaptive Weights.

METHODS
1 2 3 4 5 6
classified correctly 67.6 6%.0 64.3 63.2 64.0 63.6
classified incorrectly  32.4 32.0 35.2 36.8 36.0 36.4

Since we know the Random data set has 500 total samples. and the Independent Data

Set 2 has 250 total samples. the table can be converted from percentages to samples:

METHODS
1 2 3 4 5 6
classified correctly 33% 340 324 316 320 REE
classified incorrectly 162 160 176 184 1X0 182
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(B) Compute the expected frequency for each cell in the table. The expected frequency is
calculated by multiplying the total of the row to which the cell belongs by the total of the
column to which it belongs and then dividing by the grand total of the entire table. Since
each column adds up to the same total of 500, the expected frequency is the same for every

cell in arow. Therefore, the expected frequencies are:

_ 500 - (1956)
Croml = —_?_(—)()(T—

500 - (1044)
Cron) = —'*W = 174

(Cy  Conduct a hypothesis test at the 0.05 level of significance whether the ditferences

among the sample proportions (classification accuracies) are significant.

I. Hy: py= p,=..=pq (the sample proportions are the same)

H. : p;.ps.....p, are notall equal

(39

a = 0.05

)

Reject the null hypothesis if x* > 11.070 where

¥ = z(o-ce)‘

and 11.0701s the value ofy_(z,_()g for (2-1)(6-1) = § degrees of freedom:

otherwise the differences among the sample proportions are not significant
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4. Since ¢

formula for %2 :

S. Since ¥° =

_ 12" -
rowl — 326, and Crowz =

2

(0-e)?
2

(338 - 326)° N (340 - 326)?

N (324 - 326)-

326 326

(316 - 326)2

326

N (320 - 326)?
326 326

(162 - 174)* . (160 - 174)%

_+(318-326F
326

N (176 - 174)-

174 174

(184 - 174)° L (80~ 174)°

174

. (182 - 174)°

174 174

~

X1 = 4795

174

174, we can substitute these values into the

+

4795 does not exceed 11.070. the null hypothesis cannot be

rejected. The differences among the 6 classification accuracies are not significant.
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Il1. Determining the Threshold Value above which Classification
Accuracies are Considered to be Significantly Different than the Input

TM Classification Accuracy.

This test determines if a merging method produces an overall classification accuracy
that is statistically better than the classification accuracy obtained from the input (un-
merged) TM data set. It calculates a threshold classification accuracy value using standard
test statistics regarding the difference between two proportions [Freund 88]. If the
classification accuracy obtained from a merging method is greater than this threshold value.
then the classification accuracy is considered significantly different.

Frem Freund [88]. the test statistic concerning the difference between two

proportions is defined to be:

X1 X2
. ~ + X .
z = LN with p = T X (G-1
B pIL +
V m n»>
where: X, 1is the number of successes in type i

n, is the number of trials in type 1.

If we use Table 4-8¢ as an example again, then:

n, =n, = 500

ML= 0.5%4: and X, = 292,
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If we test at the 0.05 level of significance, then z;,s = 1.645.

Solving for x, now becomes an exercise in algebra, and x, divided by 500 is the

classification accuracy threshold. Substituting these values into equation (G-1) we obtain:

0.584 -

1.645 = SOO
/(797+x,}( i 292+xz)( 2|
T 1000/ 500

1.645 (500) _ 292 - X
1000 \/ngz x2) (708 - x2) (soo)

(0.6763) (292 + x2) (708 - x2) (gﬁ) = (292 - xoF

Muluplyving and combining the terms we get:

X

tor,

- 5835466 x; + 844759731 = 0
Solving with the quadratic equation, x, = 266.17 and 317.3%:

converting to percentages they are: 53.2% and 63.5%

and the threshold for significance is 63.5%
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L. LOWTRAN Input Parameters

722 1 000000 1T 1 10000 100
IHAZE 1 0 0 0 6 0.000 0.000 0.000 0.000
33 0 OBUFFALO 6/15/87

0.218

0.218
0.256
0.967
1.072
1.485
2.001
2.246
2.880
3111
3.300
3.409
3.949
4.185
4.374
5.081
5.839
6.659
7.552
8.539
9.634
10.880
12.33]
13.168
14.602
15.258
15933
16.632
18.834
20.949
22.380
24244
26.9239

0.985E+03
0.981E+03
0.903E+03
0.892E+03
0.850E+03
0.800E+03
0.777E+03
0.720E+03
0.700E+03
0.684E+03
0.675E+03
0.632E+03
N.614E+03
0.600E+03
(.550E+03
0.500E+03
0.450E+03
0.400E+03
0.350E+03
0.300E+03
0.250E+03
0.200E+03
0. 175E+Q3
0.139E+03
0.125E+03
0.112E+03
0. 100E+03
0.700E+02
0.500E+02
0.400E+02
(0.300E+02
0. 200E+02

0.211E+02
0.197E+02
0.180E+02
0.182E+02
0.176E+02
(0.143E+02
0.126E+02
0.660E+01
0.500E+01
(0.590E+01
0.760E+01
0.530E+01
0.600E+01
0.630E+01
0.110E+01

-0.450E+01
-0.107E+02
-0.178E+02
-0.255E+02
-0.344E+Q02
-(L452E+02
-0.572E+02
-0.593E+02
-0.640E+02
-0.619E+02
-0.650E+02
-0.621E+02
-0.627E+02
-0.544E+02
-0.542E+02
-0.492E+02
0434402

0.131E+02
U.113E+02
0.990E+01
0.500E+01
0.290E+01
0.500E+01
0.610E+01
0.490E+01
0.150E+01
-0.760E+01
-0.224E+02
-0.154E+02
-0.240E+02
-0.236E+02
-0.238E+02
-0.241E+02
-0.352E+02
-0.478E+02
-0.482E+02
-0.488E+02
-0.584E+02
-0.704E+02
-0.725E+02
-0.772E+02
-0.751E+02
-0.782E+02
-0.753E+02
-0.759E+02
-0.676E+02
-0.674E+02
-0.624E+02
-0.566E+02

H-2

0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00)
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E-+00
0.000E+00
0.000E+0Q
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0.000E+00
C.000E +00)
0.000E+00
0.000E +00

0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+(0ABG
0.000E+00ABG
0.000E+00ABG
0.000E+-00ABG
U.000E+00ABG
0.00E+00ABG
0.000E+00ABG
0.000E+(0ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+00ABG
0.000E+-00ABG
0.000E+00ABG




28.886 0.150E+02 -0.409E+02 -0.541E+02 0.000E+00 0.000E+00ABG
ALTITUDE  0.218 180.000 0.000 0.000 0.000 0

1 2166 0

42,500 79.000 0.000 0.000 15433 0.000 0.000 0.000
5000.000 40000.000  350.000

1

Where: THAZE = 1, (visibility of 23 km)
5, (visibility of § km)

6, (visibility of 50 kmy);

ALTITUDE = 705. (alttude in km for the Landsat TM sensor)
8§32, (altitude in km for the SPOT HRYV sensor).
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Il. Sensor Parameters

A _(microns) B(A)

0.410 0.0000
0.420 0.0007
0.430 0.0027
0.440 0.0370
0.450 (0.3391
0.460 0.7200
0.470 0.8206
0.480 (0.9026
0.490 0.9472
0.500 0.9891
0.510 (0.8293
0.520 0.31&87
0.530 0.0465
0.540 0.0162
0.550 0.0052
0.560 0.0031
0.570 0.0000

TMI1 gain = 0.0602436
TM1 offset = -0.15
TM1 Bandwidth = 0.07
(note: should have used TM1 Bandwidth = 0.06)
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for TM band 2

A (microns) B

0.500 0.0000
0.510 0.0233
0.520 0.1635
0.530 0.5718
0.540 0.7312
0.550 0.8367
0.560 0.8890
0.570 0.9074
0.580 0.9124
0.590 0.9571
0.600 0.942%
0.610 0.4616
0.620 0.0969
0.630 0.0357
0.640 0.0115
0.650 0.0000

TM2 gain = (0.1175036
TM?2 offset = - (.2804878
TM2 Bandwidth = 0.0%

H-
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A (microns)
0.570
0.580
0.590
0.600
0.610
0.620
0.630
0.640
0.650
0.660
0.670
0.680
0.680
0.700
0.710
0.720
0.730
0.740
0.750

hY

B
0.0000
0.0018
0.0023
0.0079
0.0375
0.2958
0.5774
0.8184
0.9008
(0.9064
0.9699
0.9983
0.7874
0.1186
0.0464
0.0200
0.0062
(0.0031
0.0000

TM23 gain = 0.080597
TM3 offset = - 0.119403
TM3 Bandwidth = 0.06

3
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Spectral Response for TM band 4

A _(microns) BA)
0.720 0.0000
0.730 0.0023
0.740 0.0070
0.750 0.0186
0.760 0.0706
0.770 0.2752
0.780 0.6534
0.790 0.9300
0.800 1.0000
0.810 0.9804
0.820 0.9359
0.830 09173
0.830 0.9196
0.850 0.9254
0.860 0.8%56
0.870 0.8844
0.880 0.8599
0.890 0.7835
0.900 0.7152
0.910 0.2114
0.920 0.0314
0.930 0.0075
0.940 0.0035
0.950 (0.0000

TM4 gain = (L.0K14399
TM4 offset = - 0.15
TM™M4 Bandwidith = 0.14
(note: should have used TM4 Bandwidth = 0.12)




S

A_(microns)
0.470
0.480
0.490
0.500
0.510
0.520
0.530
0.540
0.550
0.560
0.570
0.5%0
0.590
0.600

0.610
0.620
0.630
0.640
0.650
0.660
0.670
0.680
0.690
0.700
0.710
0.720
0.730
0.740
0.750
0.760
0.770
0.780
().790
(.8(x)

Br)
0.000

0.005
0.114
0.347
0.458
0.526
0.637
0.719
0.734
0.746
0.800
0.865
0912
0919
0.941
(0.932
0.953
0971
1.000
(.959
0.903
0.803
0.699
0.631
0.601
0411
0.215
0.08s
0.033
0014
0.006
0.004
0.002
0.000

nchromati

SPOT gain = 0.99203
SPOT offset = 0
SPOT Bandwidth = 0.17945 W/m? sr um




III.  Computed Radiance from LOWTRAN 7 with Integrated Sensor
Response (W/cm? sr um)

Awmmosphere 1| (IHAZE =1)
SPOT ™I ™2 T™3 T™4
urban 1.228E-03 4 956E-04 5.604E-04 4.245E-04 4973E-04
2.105E-03 7.551E-04 9.536E-04 7.418E-04 8.560E-04
1.044E-03 4.844E-04 4917E-04 3.431E-04 3.950E-04
1.942E-03 7.368E-04 8.805SE-04 6.777E-04 7.243E-04
1.321E-03 S&74E-04 6.164E-04 4 403E-04 JENTE-04
soil  1.392E-03 4.328E-04 S.843E-04 5.309E-04 7.505E-04
1.731E-03 3.757E-04 7.475E-04 6.410E-04 9.005E-04
2.139E-03 5.632E-04 8.351E-04 8.720E-04 1.143E-03
1.941E-03 3.778E-04 7.845E-04 7.766E-04 1.013E-03
1.209E-03 3.611E-04 4.940E-04 4.747E-04 S.826E-04
wiater 4.186E-04 S.665E-04 2.251E-04 1.OO6E-04 7.273E-05
4.292t.-04 3I875E-04 2.318E-04 1.025E-04 7 437E-05
4.350E-04 3IK17E-04 2.361E-04 1.032E-04 7.304E-03
4.643E-04 3.724E-04 2.550E-04 1.094E-04 KOITE-03
5.56KE-04 3.619E-04 3.065E-04 1.386E-04 1.191E-04
wees  1.068E-03 4.047E-04 4.846E-04 3 122E-04 1.555E-03
1.827E-03 4.297E-04 6.996E-04 4.703E-04 1.775E-02
1.181E-03 4.072E-04 S.396E-04 3.516E-04 1.566E-03
1.307E-03 4.070E-04 5.664E-04 4.303E-04 1.698E-(.3
1.045E-02 4.172E-04 S.139E-04 2.634E-04 1.778E-03
grass 9.336E-04 3.950E-04 4.660E-04 2. 480E-04 1.287E-03
7.265E-04 3.246E-04 3.746E-04 1.709E-04 1.208E-03
1.21KE-03 3 645E-04 S.770E-04 J014E-04 2.085E-03
1.257E-03 4.756E-04 S263E-04 4.261E-04 1. 967E-03
1.2261-03 3.541E-04 5475E-04 3.6861:-04 1.949F-03
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soil

water

rees

grass

Awtmosphere 2 (IHAZE =5)

8.890E-04
1.312E-03
7.982E-04
1.233E-03
9.316E-04

9.732E-04
1.135E-03
1.341E-03
1.243E-03
8.858E-04

4.942E-04
4.992E-04
5.018E-04
S.156E-04
S.604E-04

8.139E-04
1.037E-03
8.683E-04
9.318E-04
8.002E-04

7.458E-04
6.458E-04
8.846E-04
9.080E-04
8.914E-04

3.886E-04
4.925E-04
3.839E-04
4.848E-04
4.252E-04

3.635E-04
4.208E-04
4.158E-04
3.822E-04
3.346E-04

4. 110E-04
3444E-04
3.422E-04
3.388E-04
3.337E-04

3.523E-04
3.625E-04
3.534E-04
3.533E-04
3.573E-04

3.482E-04
3.199E-04
3.763E-04
3.805E-04
3T722E-04

4.106E-04
5.919E-04
3.787E-04
5.584E-04
4.362E-04

4.222E-04
4.972E-04
5.389E-04
S.152E-04
3.807E-04

2.552E-04
2.583E-04
2.603E-04
2.690E-04
2.928E-04

3752E-04
4.748E-04
4.006E-04
4.132E-04
3.883E-04

3.666E-04
3.244E-04
4.172E-04
3941E-04
4.038E-04
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3.010E-04
4.627E-04
2.595E-04
4.301E-04
3.090E-04

3.555E-04
4.116E-04
5.294E-04
4.808E-04
3.268E-04

1.358E-04
1.367E-04
1.371E-04
1.402E-04
1.550E-04

2.441E-04
3.245E-04
2.642E-04
3.045E-04
2.191E-04

2.111E-04
1.718E-04
2.384E-04
3.032E-04
2.737E-04

3.502E-04
5.544E-04
2.921E-04
4.790E-04
3.453E-04

4.944E-04
5.800E-04
7.177E-04
6.435E-C4
3.985E-04

1.088E-04
1.097E-04
1.093E-04
1.130E-04
1.352E-04

9.533E-04
1.079E-03
9.597E-04
1.035E-03
1.080E-03

8.002E-04
7.551E-04
1.256E-03
1.18RE-03
1.178E-03




soil

water

oees

arass

Atmosphere 3 (IHAZE =6)

1.200E-03
2.120E-03
1.006E-03
1.949E-03
1.298E-03

1.372E-03
1.728E-03
2.154E-03
1.947E-03
1.180E-03

3.497E-04
3.608E-04
3.670E-04
3.978E-04
4.950E-04

1.033E-03
1.515E-03
1.151E-03
1.283E-03
1.OOSE-03

8.914E-04
6.737E-04
1.191E-03
1.230E-03
199E-03

4.748E-04
7.500E-04
4.629E-04
7.307E-04
5.722E-04

4.081E-04
5.596E-04
5.464E-04
4.569E-04
3.321E-04

SS12E-04
3.602E-04
3.541E-04
3.442E-04
3.330E-04

3.784E-04
4.048E-04
3.810E-04
J.ROKRE-04
3.915E-04

3.681E-04
2.935E-04
4.417E-04
4.535E-04
4.306E-04

5.445E-04
9.583E-04
4.722E-04
8.813E-04
6.035E-04

5.696E-04
7.414E-04
8.334E-04
7.802E-04
4.745E-04

1.616E-04
1.986E-04
2.031E-04
2.230E-04
2.772E-04

4.647E-04
6.910E-04
5.227E-04
5.508E-04
4.956E-04

4.452E-04
3.489E-04
5.620E-04
5.086E-04
5.310E-04
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4.174E-04
7.492E-04
3.323E-04
6.822E-04
4.340E-04

5.287E-04
6.438E-04
8.851E-04
7.855E-04
4.700E-04

7.845E-05
8.047E-05
8. 118E-05
8.767E-05
1.182E-04

3.000E-04
4.654E-04
3.413E-04
4.235E-04
2.489E-04

2.328E-04
1.521E-04
2.887E-04
4.190E-04
3.590E-04

4.982E-04
8.720E-04
3.915E-04
7.348E-04
4.892E-04

7.620E-04
9.183E-04
1.171E-03
1.035E-03
S.871E-04

5.495E-05
5.666E-05
5.590E-05
6.266E-05
1.034E-04

1.598E-03
1.827E-03
1.610E-03
1.747E-03
1.830E-03

1.320E-03
1.238E-03
2.149E-03
2.026E-02
2.007E-03




Iv. Computed Digital Counts
Atmosphere 1 (IHAZE = 1)

SPOT TMI ™2 ™3 ™4

urban 68 120 62 89 45
116 182 104 155 77
58 117 55 72 36
107 177 96 142 65
73 142 68 93 45
soil 77 105 65 111 68
96 139 82 134 81
118 136 91 182 102
107 116 86 162 91
67 88 S5 100 53
water 23 137 26 22 8
24 94 27 23 8
24 3 28 23 8
26 91 30 24 9
3] 88 35 30 12
wees S9 9% 54 66 138
84 104 77 99 158
65 99 60 74 139
72 99 63 90 151
58 101 57 56 158
grass 52 96 52 53 115
40) 79 42 37 108
67 113 64 64 185
69 115 S8 90 174

68 110 61 78 173
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urban

soil

water

grass

Awmmosphere 2 (IHAZE =5)

SPOT  TMI ™2 ™3 ™4
49 05 46 64 33
73 116 65 97 S50
44 94 43 55 27
68 117 62 90 44
52 103 49 65 32
54 &9 47 75 45
63 102 55 87 53
74 101 60 111 65
69 93 57 101 S8
49 82 43 69 37
27 100) 30 30 11
28 84 30 30 11
28 &4 30 30 11
29 &3 3 30 12
31 82 34 34 14
45 g6 42 52 &5
57 88 53 69 96
48 86 45 56 86
52 86 46 64 95
44 &7 44 47 97
a1 €5 41 45 72
36 78 37 37 68
49 92 47 51 112
50 93 44 64 106
49 91 45 S8 105
H-13




urban

soil

water

trees

grass

Atmosphere 3 (IHAZE =6)

SPOT  IMI
66 115
117 180
56 112
108 176
72 138
76 99
96 135
119 132
108 11]
65 81
19 133
20 88
20 86
22 84
27 81
57 92
84 9%
64 93
71 93
56 95
49 90
37 72
56 107
68 110
66 105

™2

60
104
53
96
67

63
81
91
&5
53

52
76
58
61
55

50
40
62
56
59

H-14

111
135
185
164

99

18
18
18
20
26

69
82
105
93

~1

—_— =~

142
162
143
155
162

118
110
190
180
178




V.

Reflectance Spectra
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V. Reflectance Spectra

The following tables contain the reflectance spectra for the 25 targets used in
computing the synthetic panchromatic weights. For those spectra which are averages of
other signatures, the variance associated at each wavelength is also included. The 25

signatures are:

URBAN: asphalt ave”
concrete ave”
gravel
roofing asphalt
slate

SOIL.: clay ave”
loam dry ave”
loam wet ave”
sand ave®
soil ave”

WATER: water] through water4
water ave”

TREES: ash ave”
beech ave”
maple ave®
oak ave”
pine ave®

GRASS: clover
coarse grass
orchard grass
swamp grass
grass ave”

* denotes an averaged signature
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wavelength asphalt ave variance
(micron) (%r) (%r)
0.4000 7.2539 4.2078
0.4324 8.5758 4.7523
0.4647 9.5174 5.0668
0.4971 10.4912 5.4329
0.5294 11.3506 5.8412
0.5618 12.2835 6.2126
0.5941 13.0583 6.5111
0.6265 13.6551 6.6112
0.6588 14.2181 6.8261
0.6912 14.6264 6.9133
0.7235 15.0084 7.1620
0.7559 15.2762 7.3441
(.7882 15.5070 7.4223
0.8206 15.7433 7.4260
0.8529 15.9420 7.4292
0.8853 16 1183 7.4500
0.9176 16.3185 7.4710
0.9500 16.5668 7.4837
0.9824 16.8450 7.5006
1.0147 17.1273 7.5359
1.0471 17.3849 7.6019
1.0794 17.5790 7.6872
1.1118 17.6489 7.7207
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wavelength concrete variance
(micron) ave (%r) (%r)
0.4000 14.7078 6.0053
0.4324 17.6116 6.6171
0.4647 19.7129 6.8831
0.4971 21.2464 7.0876
0.5294 23.2163 7.5996
0.5618 25.0887 8.0533
0.5941 26.2880 8.2168
0.6265 27.0557 8.2593
0.6588 27.5655 8.2729
0.6912 27.8814 8.2884
0.7235 28.1160 8.3150
0.7559 28.3200 8.3466
0.7882 28.4864 8.3615
0.8206 28.6126 8.3318
0.8529 28.7264 8.2521
0.8853 28.8753 8.1423
0.9176 29.0510 7.9966
0.9500 29.2245 7.8188
0.9824 29.4779 7.6490
1.0147 29.8235 7.5170
1.0471 30.2322 7.4364
1.0794 30.6663 7.3760
1.1118 31.0389 7.3350
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wavelength gravel
(micron) (%)
0.400 18.000
0.450 20.000
0.500 20.000
0.525 20.000
0.550 22.000
0.600 24.500
0.650 24.500
0.670 24.500
0.700 26.500
0.715 27.000
0.750 25.000
0.800 25.000
0.815 25.000
0.850 22.500
0.865 22.500
0.900 24.000
0.950 25.000
1.000 26.500
1.050 28.000
1.100 29.500
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wavelength
(micron) roof asphalt (%r)
0.400 9.000
0.450 9.500
0.500 9.750
0.700 11.000
0.750 11.150
0.800 12.000
0.850 12.500
0.900 12.000
1.000 11.000
1.100 10.500
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wavelength slate ave variance
(micron) (%r) (%er)
0.4000 13.1667 3.2998
0.4292 13.3976 3.2968
0.4583 13.7525 3.3045
0.4875 13.9445 3.3307
0.5167 14.0698 3.3559
0.5458 14.1598 3.4457
0.5750 14.2063 3.6840
0.6042 14.4843 3.7597
0.6333 14.8553 3.6220
0.6625 14.8325 3.6667
0.6917 14.9481 3.5924
0.7208 15.1430 3.4748
0.7500 15.3315 3.3968
0.7792 15.4539 3.4206
0.8083 15.5103 3.5196
0.8375 15.5195 3.6342
0.8667 15.5071 3.7507
(0.8958 15.4992 3.8752
0.9250 15.5184 4.0212
0.9542 15.5640 4.1903
0.9833 15.6268 4.3732
1.0125 15.6971 4.5547
1.0417 15.7640 47143
1.070% 15.8139 4.8278
1.1000 15.8336 4.8707
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wavelength clay ave variance
(micron) (%r) (%r)

0.4 9.475 6.4169
0.4324 10.3895 6.7527
0.4647 12.033 7.6052
0.4971 13.3854 8.5273
0.5294 14.7924 9.2407
0.5618 18.6361 10.4947
0.5941 26.6893 13.5757
0.6265 30.3166 15.7008
0.6588 32.8111 16918
0.6912 35.5978 17.0522
0.7235 37.6873 16.8153
0.7559 38.9559 15.8306
0.7882 39.07 15.538
0.8206 39.1095 15.7183
0.8529 38.7008 15.4574
0.8853 38.6528 15.5417
0.9176 38.6716 15.4146
0.95 39.2862 15.8408
0.9824 40.1467 16.2454
1.0147 40.6325 15.6496
1.0471 41.4368 15.2551
1.0794 42.6397 15.5841
1.1118 43.4778 15.9322
1.1441 43.6774 16.1637
1.1765 43.1041 16.2399
1.2088 41.6337 16.2958




wavelength loam dry variance
(micron) ave (%r) (%r)
0.4000 4.8250 2.6501
0.4324 6.0320 3.5878
0.4647 7.8972 4.979
0.4971 9.9596 6.2457
0.5294 13.5459 8.2032
0.5618 18.6381 11.227
0.5941 23.4690 13.3411
0.6265 26.7455 14.664
0.6588 28.9561 15.435
0.6912 31.0680 15.8183
0.7235 32.8521 16.0029
0.7559 34.0106 15.9468
0.7882 34.3662 15.4817
0.8206 34.3678 14.7332
0.8529 34.1023 13.9781
0.8853 34.1604 13.6261
0.9176 34.1348 13.5397
0.9500 34.2633 13.4116
0.9824 34.5742 13.2416
1.0147 35.1156 13.161
1.0471 35.9354 13.3093
1.0794 37.0586 13.8047
1.1118 38.4470 14.7299
1.1441 40.0378 16.1804
1.1765 41.5871 17.8806
1.2088 42.5748 18.8076
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wavelength loam wet variance
(micron) ave (%r) (%r)

0.4000 3.1167 1.2857
0.4324 3.3001 1.5313
0.4647 3.8405 2.0974
0.4971 4.7867 2.8985
0.5294 6.6116 4.3601
0.5618 9.4394 6.7946
0.5941 12.5652 9.2795
0.6265 147714 10.8467
0.6588 16.3326 12.0248
0.6912 17.7031 12.7291
0.7235 18.7446 12.9564
0.7559 19.3152 12.7056
0.7882 19.4697 11.8912
0.8206 19.0534 10.9520
0.8529 18.5257 10.2040
0.8853 18.3156 9.8384
09176 18.4599 9.8763
0.9500 18.8830 10.2211
0.9824 19.4982 10.7697
1.0147 20.2187 11.3783
1.0471 20.9563 11.8777
1.0794 21.6055 12.1278
1.1118 22.1714 12.2357
1.1441 22.8341 12.4335
1.1765 23.7957 12.9180
1.2088 25.2523 13.9713
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wavelength sand ave variance
{micron) (%r) (%r)

0.4000 9.7910 6.9012
0.4324 11.0945 6.9322
0.4647 12.4006 7.2508
0.4971 13.8032 7.5379
0.5294 16.0499 7.7878
0.5618 18.2708 7.6676
0.5941 19.8237 7.5009
0.6265 21.5510 7.7226
0.658% 233101 7.8350
0.6912 24.8459 7.4841
0.7235 26.2491 7.6764
0.7559 27.7084 8.1159
0.7882 28.9225 8.5884
0.8206 299130 8.9397
0.8529 30.7870 9.2115
0.8853 31.7761 9.4635
0.9176 32.5929 9.5225
0.9500 33.4390 9.5676
0.9824 34.3435 9.9087
1.0147 35.2869 10.7863
1.0471 35.8646 11.0431
1.0794 36.4346 10.8028
1.1118 37.0728 10.6271
1.1341 37.7160 10.5012
1.1765 38.0292 10.4641
1.2088 38.6012 10.1514
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wavelength

(micron) soil ave (%r) variance (%r)
0.4000 4.7951 3.3789
0.4324 5.5813 3.8050
0.4647 6.5829 4.5061
0.4971 7.9013 5.6142
0.5294 9.9614 7.1669
0.5618 12.6366 8.8267
0.5941 15.1746 10.5700
0.6265 16.9803 11.9755
0.6588 18.6543 12.9735
0.6912 20.2253 13.37i2
0.7235 21.7086 13.7367
0.7559 23.1065 14.149%
(0.7882 24.1747 14.3461
0.8206 248104 14.2925
0.8529 25.1980 14.1392
0.8853 25.6280 13.9194
0.9176 26.0587 13.8155
0.9500 26.7500 13.807Y
0.9824 27.4794 13.8130
1.0147 28.3895 13.9910
1.0471 29.6291 14.3832
1.0794 30.7135 14.6852
1.1118 31.5308 14.7322
1.1441 321033 14.5755
1.1765 32.7071 14.5394
1.2088 33.7309 15.0002




wavelength
(micron) waterl (%r)
0.400¢ 9.7015
0.4090 9.1188
0.4175 8.7248
0.4357 8.9543
0.4556 8.0026
0.4773 7.6746
0.4988 4.1640
0.5115 3.3056
0.5249 2.6529
0.5391 2.1187
0.5540 1.6514
0.5698 1.3312
0.5865 1.0090
0.6042 0.7584
0.6431] 0.4790
0.6873 0.3871
0.7380 0.4110
0.7663 0.4344
0.8299 0.4869
(.8658 0.5166
0.9050 1.5489
0.9479 0.5844
0.9950 0.6233
1.0471 0.6664
1.1050 0.7142
1.1696 A 0.7675
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wavelength water2 water3
(micron) (%r1) (%r)
0.3500 9.5000 8.5000
(0.4141 8.3520 7.3093
0.4320 7.4443 6.6690
0.4415 7.3446 6.6499
0.4515 7.5874 6.7585
0.4619 7.4994 6.7574
0.4728 7.1857 6.5176
0.4843 6.2669 5.8943
0.5089 3.7620 3.9381
0.5222 3.0897 3.3250
0.5540 1.9160 2.1596
0.58 'S 1.2063 1.2317
0.6042 0.9411 0.9832
0.6231 0.7134 0.7657
0.6431 0.5870 0.6346
0.6873 0.4426 0.4414
0.7117 0.4377 0.4167
0.7663 04877 0.4642
0.8299 0.5460 0.5197
0.8658 0.5790 0.5510
0.9050 0.6149 0.5851
0.9479 0.6542 0.6225
0.9950 0.6975 0.6636
1.0363 0.7352 0.6995
1.0929 0.7872 0.7489
1.1561 0.8452 0.8039
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wavelength water4
(micron) (%r)
0.3992 7.4657
0.4057 6.7603
0.4320 49371
0.4415 4.8927
0.4515 5.1718
0.4619 54126
0.4728 5.4186
04843 5.3286
0.5089 4.6148
0.5222 4.0431
0.55- 2.8143
0.5865 1.8684
0.6231] 11221
0.6645 0.7816
0.6873 0.6334
0.7117 0.6040
0.7663 0.6725
0.7968 0.7109
0.8299 0.7524
(.8658 0.7975
0.9050 0.8467
0.9479 0.9005
0.9950 0.9597
1.0363 0.1012
1.0929 0.1083
1.1561 0.1162




veavelength water ave variance
{micron) (%cr) (%r)
0.4000 5.7672 24318
0.4324 4.5551 2.4561
0.4647 4.7533 2.3265
0.4971 4.4339 0.6491
0.5294 5.0181 1.9894
0.5618 4.4923 2.9046
0.5941 3.4049 2.7532
0.6265 2.7564 2.6319
0.6588 2.0105 1.9582
0.6912 1.5028 1.4185
0.7235 2.0454 24572
0.7559 2.0818 2.4303
0.7882 2.1182 2.4038
0.8206 2.1546 23776
0.8529 2.1909 2.3519
0.8853 2.2273 2.3266
0.9176 2.2637 2.3017
0.9500 2.3001 2.2774
0.9824 2.3365 2.2535
1.0147 2.3729 2.2308
1.0471 2.4093 2.2072
1.0794 2.4456 2.1849
1.1118 2.4820 2.1631
1.1441 2.5183 2.1418
1.1765 2.5548 21212
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wavelength ash ave variance
(micron) (%r1) (%er)
0.4000 5.0125 0.3238
0.4234 4.9661 0.4247
0.4469 5.1264 0.8480
0.4703 5.5450 1.1364
0.4938 6.3108 1.5188
0.5172 8.4325 1.6261
0.5407 10.7217 1.5823
0.5641 10.7408 1.8448
0.5876 9.4564 2.7846
0.6110 9.0323 3.4688
0.6345 8.5204 4.2551
0.6579 8.0063 49861
0.6814 8.2313 5.7139
0.7048 21.8191 4.5883
0.7283 39.2243 6.7595
0.7517 46.2806 8.2610
0.7752 49.9668 8.2553
0.7986 51.7098 7.4394
0.8221 53.0270 6.5921
(0.8455 54.3608 5.9239
0.8690 55.4814 5.3648
0.8924 56.4352 4.8749
0.9393 58.0869 4.3429
0.9862 58.8730 3.8533
1.0331 60.3809 3.7795
1.0800 61.3854 3.5782
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wavelength beech ave variance
(micron) (%r) (%r)
0.4000 4.8500 0.9394
0.4234 5.3658 1.4039
0.4469 5.7867 1.7304
0.4703 6.1550 1.9747
0.4938 6.7592 2.2864
0.5172 11.1213 4.3175
0.5407 16.6838 5.4089
0.5641 18.5977 4.8492
0.5876 17.0617 3.0501
0.6110 16.8021 2.7648
0.6345 16.3848 3.8047
0.6579 14.2365 5.6858
0.6814 13.0250 7.1986
0.7048 32.6949 1.7470
0.7283 48.6266 5.2838
0.7517 54.9735 6.6395
0.7752 57.5684 5.9558
0.7986 59.2999 4.7611
0.8221 60.8526 3.5106
0.8690 63.3283 1.5286
0.8924 64.2547 1.0458
0.9393 65.4749 0.8854
0.9628 65.4183 1.1004
0.9862 65.4514 1.0546
1.0331 66.3466 0.9209
1.0800 67.1000 1.2450
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wavelength maple ave variance
(micron) (%) (%or)
0.4000 4.7867 0.4559
0.4234 5.0294 0.8322
0.4469 5.1253 1.2348
0.4703 5.3693 1.5295
0.4938 6.1976 1.5856
0.5172 9.3411 1.9537
0.5407 12.5070 29783
0.5641 12.8521 2.9924
0.5876 11.2525 3.5179
0.6110 10.6587 4.5478
0.6345 10.4587 5.6960
0.657Y 9.5093 6.8845
0.6814 9.6588 8.0209
0.7048 24.3516 5.73%2
0.7283 40.3821 8.5347
0.7517 47.1126 10.7630
0.7752 50.2860 10.6759
0.7986 52.1011 10.0600
0.8221 53.495] 9.4201
0.8690 55.8997 8.4940
0.8924 56.7429 8.1538
0.9159 57.5245 7.9329
0.962% 58.4657 7.4945
1.0097 59.3190 7.5105
1.033] 59.8287 7.6975
1080 60.3188 8.0890
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wavelength oak ave variance
(micron) (%r) (%)
0.4000 4.0429 0.5010
0.4234 4.8187 0.7119
0.4469 5.3397 0.7865
0.4703 5.5008 1.1908
0.4938 6.0075 1.2904
0.5172 9.2896 1.6779
0.5407 12.9003 3.4844
0.5641 13.2204 2.6626
0.5876 12.5584 2.0621
0.6110 12,7182 4.1991
0.6345 12.6137 7.5743
0.6579 12.5229 9.9150
0.6814 14.7312 10.0947
0.7048 27.3688 6.6030
0.7283 423325 7.4662
0.7517 50.9876 11.0869
0.7752 54.0828 10.491%
0.7986 55.9306 8.9539
0.8221 57.8067 7.5194
0.8690 61.2838 5.3045
0.9159 63.8494 3.7723
0.9628 65.0181 3.1835
0.9862 65.1896 3.0757
1.0097 €5.1379 2.9793
1.0566 64.9464 2.8561
1.0800 64.8637 27847

»J

H-3)




wavelength pine ave variance
(micron) (%r) (%)
0.4000 4.2192 0.7970
0.4234 5.1893 0.8867
0.4469 5.9020 0.9486
0.4703 6.0801 0.9306
0.4938 6.3519 0.9108
0.5172 9.5201 1.8357
0.5407 13.2585 2.5531
0.5641 12.4005 2.3609
0.5876 9.5369 1.9395
0.6110 §.0952 1.741%
0.6345 6.85038 1.9908
0.6579 5.6494 1.4920
0.6814 6.1304 1.2907
0.7048 18.7707 3.4072
0.7283 43.4731 7.2556
0.7517 56.8457 12.0020
0.7986 60.6639 12.9094
0.8221 61.5947 12.7374
0.8690 62.2015 12.9853
(.8924 62.0399 12.8182
0.9159 61.3843 12.4189
0.9393 60.3627 11.8626
0.9628 57.8612 10.5839
0.9862 57.1754 10.2476
1.0331 60.2705 11.6057
1.0800 61.8625 11.9252




wavelength COarse grass
(micron) clover (%r) (%r)
0.40 2.00 4.50
0.50 3.00 6.00
0.56 8.00 11.00
0.62 4.00 7.00
0.68 1.50 5.00
0.76 38.00 40.00
0.78 39.00 42.00
0.80 40.50 43.50
0.86 42.00 45.00
0.96 45.00 45.00
1.02 49.00 47.00
1.12 48.00 47.00
H-35




wavelength orchard grass

(micron) (%r)
0.40 9.00
0.50 9.00
0.54 13.30
0.64 7.50
0.70 25.00
0.73 45.00
0.75 60.00
(.78 67.00
0.90 69.50
0.95 69.30
1.08 72.80
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wavelength swamp grass

(micron) (%r)
0.40 7.90
0.48 8.00
0.50 8.50
0.52 13.00
0.54 15.50
0.56 15.00
0.60 10.00
0.68 7.00
0.69 6.50)
0.70 18.00
0.73 60.00
0.75 70.00
0.78 71.00
.88 73.00
1.10 74.50
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wavelength grass ave variance
(micron) (%) (%er)
0.4000 8.6455 3.0086
0.4234 8.1555 29210
0.4469 7.3426 2.6931
0.4703 7.0755 2.5241]
(.4938 8.2226 2.5462
0.5172 11.3208 3.1860
0.5407 13.9132 3.7150
0.5641 13.5884 3.2290
0.5876 11.2198% 27514
0.6110 8.3764 23623
0.6345 6.7733 2.6845
0.6579 8.4793 4.1997
0.6814 15.5105 5.83060
0.7048 29.6291 7.9535
0.7283 48.3172 10.9784
0.7517 60.6736 11.5657
0.7752 64.8162 12.1918
0.7986 66.5935 12.2972
0.8221 67.7268 12.2363
0.8690 68.4342 12.3458
0.8924 68.2135 12.2043
0.9393 67.1161 11.3917
0.9628 67.0564 10.9687
1.0097 68.9507 10.6680
1.0566 70.8419 10.9669
1.0800 70.7134 10.9599

H-3%
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Appendix 1

Computing the Standard Deviation Between Two Values

This appendix shows that the standard deviation between two samples is the absolute

value of their differences divided by the square root of two.

: . _ X] + X :
Given two samples, x, and x, ,and their average, X = —1—,)—3 , we can write the

-~

definition of the standard deviation between them as:

_ A RP + (xg-FF
° = /\/ | n-l

since n = 2 samples, the equation can be rewritten as:

6 = Vix3-2% +x3+(x2-2x% +x°)

combining terms,

c = w/x{+x%+2§:- 2X(x1 + x2)
substituting in x,
/2 2 X]+Xw2 X1+ X2
0=»\/x]+x2+2( 5 *)—"( 3 ‘)(x1+>\'3)
o2 2. 1Ty 0
C = yXi+xi- 5(’\1+X2)‘
c = \/%(’\T 2x1X2+ X3)
o =1 (x1 - xaf
2
and
X] - X
G = M- xd

v
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